复合混凝土基体后植筋结构粘结性能的试验研究

来源 :苏州科技大学 | 被引量 : 0次 | 上传用户:EAGLE1205
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
植筋加固是运用最为广泛的加固方法之一。在实际工程中,对于不满足承载力要求的梁、柱等构件需要进行增大截面加固,对于需要增大截面后植筋的复合混凝土基体后植筋结构,不同的植筋深度、植筋钢筋埋入下部基层和下部基层的长度之比,会对植筋试件的承载力造成一定的影响。目前大多数是对关于单基体植筋粘结锚固的破坏模式和极限承载力等方面的研究,对复合混凝土基体后植筋结构的粘结锚固性能研究较少,本文从以下三个方面展开了研究:以植筋埋深、植筋钢筋埋入混凝土的长度与埋入灌浆料的长度之比(长度比系数)为参数设计了14个复合混凝土基体植筋锚固试件。对14个植筋试件进行拉拔试验,观察各个试件的破坏形态和破坏特征,测量各个试件的荷载-位移曲线,研究不同参数影响下植筋结构拉拔承载力的变化,探讨植筋深度和长度比系数对植筋粘结锚固性能的影响,试验表明:当复合混凝土基材上部基层采用较高强度等级(C60),下部基层强度等级为C35,复合混凝土基体植筋试件植筋深度为4d~9d时,一般发生复合破坏;在植筋直径、植筋深度等相同条件下,复合混凝土基体植筋试件增大长度比系数λ,其对应峰值荷载位移也相应增大,整体刚度减小,延性得到提高;当长度比系数0.5时,复合混凝土基体植筋试件的极限承载力随着植筋深度的增大而增大,因为两种材质与植筋胶之间的粘结强度相差不大,植筋深度还是影响植筋试件极限承载力的最重要的一个因素。分析复合混凝土基体植筋的影响因素,根据复合混凝土基体植筋拉拔试验的破坏形态,建立了复合混凝土基体植筋复合破坏的计算模型,并建立了复合混凝土基体植筋极限拉拔承载力的计算公式,计算值与试验值吻合良好。通过ABAQUS有限元软件对本次试验的部分试件进行分析验证,得到的模拟荷载-位移曲线与试验荷载-位移曲线进行比对,吻合较好,此模型是合理的。并在此模型上改变参数,研究不同参数对复合混凝土基体植筋的极限承载力影响。分析表明:复合混凝土基体植筋结构发生复合破坏时,当上部基层强度等级(C60)不变的情况下,下部基层(混凝土)强度等级越高,胶和基体的粘结强度越大,拉拔承载力也越大;其他影响因素相同的条件下,拉拔承载力随着长度比系数的增大而增大。
其他文献
不具备能量耗散的系统一般用哈密尔顿系统表示,即H(x,Du(x))=0。而具有能量耗散的很大一类物理、力学系统需要用接触哈密尔顿系统,即H(x,u(x),Du(x))=0来表示,两者的区分在于后者在形式上比前者多了一个自由度u(x),它们之间的关系类似于接触几何与辛几何之间的关系。近年来接触哈密尔顿系统被广泛运用于非保守力学系统、耗散力学系统以及微观动力学、平衡统计力学等领域。Hamilton-J
随着水资源的日益匮乏和用水需求的不断增加,城市供水管网的漏失控制引起了国内外供水企业的广泛关注,成为管网研究的重要课题。供水管网漏失控制水平主要取决于管道和附属设施的选材、使用年限等物理属性和管网的流量、压力等运行条件参数。其中管网压力是重要的影响因素之一,降低管网压力可有效减少供水管网的漏失量。减压阀的调控和运用较简单,合理应用可以有效降低管网运行压力。减压阀优化控制对于降低管网漏失量、提高水资
随着深大基坑的广泛开挖,地下连续墙的应用越来越多。南京宁海路基坑开挖项目采用两墙合一的地下连续墙结构,地下连续墙既作围护结构,又作为地下室外墙。为增加地下连续墙与框架梁的节点刚度,防止地下室梁墙节点混凝土开裂,造成渗水等隐患,创新性的采用了暗柱与地下连续墙结合的施工工艺。暗柱已经广泛应用在剪力墙中,用来抵抗梁墙节点平面外弯矩,提高节点刚度,防止节点过早开裂。目前对于暗柱提高梁墙节点刚度的研究已经成
目前,城市规模不断扩大的同时,城市机动车拥堵现象日益严重,并且造成了严重的空气污染。在城市短距离出行方面,越来越多的市民放弃了驾驶机动车出行,而是选择公共自行车这一绿色低碳的出行方式;长距离出行方面,越来越多的市民将公共自行车作为换乘的工具,用来解决到达目的地之前的“最后一公里”问题。但由于公共自行车系统缺乏科学的运营管理,使得公共自行车系统在现实运营中时常出现“无车可借,无桩可还”的问题。这无疑
二氧化钛(TiO2)由于具有无毒、低成本、高稳定性、催化活性好等优点成为最常用的光催化剂之一。然而,TiO2的宽带隙(3.2 e V),使其仅在低于390 nm的波长下被紫外光激活,对可见光利用率低,光生电子-空穴对复合速度快易失活,电荷迁移速率缓慢,严重限制了TiO2的应用。通过金属离子注入、非金属掺杂、异质结构筑、染料敏化、转换发光剂掺杂等改性方法修饰TiO2表面可拓展其光吸收范围,提高光催化
组合结构具有刚度大、延性好、抗震和抗火性能优越、形式灵活等优点,近年来在超高层结构中得到广泛应用。目前对型钢混凝土柱(SRC柱)和钢筋混凝土梁(RC梁)单个构件在火灾下的抗火性能,国内外已经开展了一些相关的研究工作。然而高温下SRC柱—RC梁整体框架结构抗火性能研究还很少,尤其是对于火灾高温下SRC柱—RC梁框架结构中RC梁的悬链线效应还未见相关报导。因此,对SRC柱—RC梁整体框架结构抗火性能进
随着经济社会发展建设的推进,建筑结构更加复杂多样,人们对于建筑性能的要求不断提高,组合柱的概念被提出。相比于传统钢筋混凝土柱,组合柱具有更好的力学特性。钢管混凝土柱是由混凝土填充入钢管中而形成的组合柱,由于该组合柱具有较高的强度以及较好的延性而被广泛研究,是一种较为常见的组合构件形式。然而,钢管混凝土表面腐蚀问题和耐火问题目前还在研究当中。本文提出一种新型外包ECC-PVC管混凝土组合柱,PVC管
拱肋作为拱桥的主要成分对其实施监测对施工后的线形控制和结构性能评估具有重要意义。然而,由于拱肋上监测点之间的高度差变化大,传统监测方法只能进行点式测量,因此拱肋的健康检测精度难以满足实际工程的需求。基于光频域反射技术(OFDR)的分布式光纤传感器可以实现结构应变实时分布式的测量,利用此传感器的独特优势,研究将该技术应用到拱桥的健康监测领域,为桥梁健康监测提供新的思路。本文以探究拱肋的应变分布为目标
迄今为止,外包钢板内填混凝土组合剪力墙的研究表明:设置外包钢板能够对内填混凝土产生有效约束,混凝土的抗侧力和延性得到提高,同时混凝土和抗剪连接件也能有效限制钢板的面外变形,延缓了钢板的屈曲,充分挖掘了钢板的工作潜能。研究证实这种构件具有水平承载力高、抗侧刚度大和抗震延性好的优势。课题组基于钢板剪力墙和混凝土剪力墙的力学性能,提出了以实现混凝土压力场和钢板拉力场协调一致的双开孔钢板约束混凝土组合剪力
风力发电已成为最具前景的可再生能源之一,然而风力发电机组的运行环境恶劣且运行工况多变,使得其传感器和执行器等部件极易发生故障,一旦故障没有得到及时的处理,会造成不可挽回的经济损失。因此,风力发电系统故障诊断和容错控制的研究十分必要。本文为此开展了以下研究:首先从空气动力学效应出发分析计算能量转换效率,建立风力发电系统各环节的模型。其次研究了风电机组运行于低风速区时的最大功率跟踪控制原理,针对实际风