基于Pauwels分型相关的股骨颈骨折阳性支撑复位定量研究与一种新型钢板的研制

来源 :苏州大学 | 被引量 : 0次 | 上传用户:haibei007
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
股骨颈骨折是临床常见的髋部骨折,由于血供的原因容易发生骨折不愈合及股骨头缺血坏死两大并发症。特别对于中青年患者保髋治疗的特殊性,以及较高的股骨头坏死率,一直是骨科治疗中的难题。有效的复位及稳定的内固定是减少并发症的关键。对于高能量损伤的中青年股骨颈骨折,有专家认为基于生物力学的Pauwels分型更能反应此类骨折的严重程度,因此基于Pauwels分型相关的复位及内固定研究具有较强的临床意义。解剖复位是临床闭合复位追求的目标,但对于一些难复性股骨颈骨折很难达到解剖复位,而且反复的牵引复位会损伤残存的股骨头血供。2013年Gotfried等提出了一种股骨颈骨折阳性支撑复位的理念,亦能达到较好的临床疗效。当闭合复位达不到解剖复位时,阳性支撑复位可以接受,而阴性支撑复位应尽量避免。但目前缺乏股骨颈骨折阳性支撑复位的生物力学试验评价及定量标准化研究,因此三种Pauwels分型(Pauwels Ⅰ型、Ⅱ型及Ⅲ型)的阳性支撑复位定量研究具有现实临床意义。而基于Pauwels分型的内固定研究一直是热点问题,随着Pauwels角的增大,需要更加稳定的内固定方式,特别是对Pauwels Ⅲ型股骨颈骨折不同内固定方式及新型内固定物的探索是目前的研究方向。本课题旨在对不同Pauwels分型股骨颈骨折阳性支撑复位进行生物力学定量研究,并基于Pauwels Ⅲ型股骨颈骨折的解剖特点设计研制了一种新型内固定钢板。第一部分股骨颈骨折阳性支撑复位临床与试验研究(一)股骨颈骨折阳性支撑与阴性支撑复位的临床疗效比较目的:在本回顾性研究中,我们的目的是比较Gotfried阳性支撑复位、阴性支撑复位治疗股骨颈骨折的临床疗效。方法:回顾性分析我院自2011年10月至2016年3月期间采用闭合阳性支撑复位、阴性支撑复位结合空心加压钉内固定治疗55例股骨颈骨折患者的临床资料,根据骨折复位质量的不同分为两组(Ⅰ组和Ⅱ组)。Ⅰ组29例为Gotfried阳性支撑复位,其中男16例,女13例,平均年龄为43.45±8.23岁。Ⅱ组26例为Gotfried阴性支撑复位,其中男14例,女12例,平均年龄为41.96±8.69岁。比较两组术后股骨颈短缩程度,末次随访时骨折的不愈合率、固定失败率、股骨头缺血坏死率及髋关节Harris评分。结果:本研究中所有患者随访时间均超过18个月。Ⅰ组未出现骨不连、固定失败及股骨头缺血坏死病例;而Ⅱ组有1例出现骨不连,3例出现早期固定失败,±例出现股骨头缺血坏死,共5例(19.23%)最后接受了关节置换手术。Ⅰ组及Ⅱ组在股骨颈垂直平面短缩平均分别为的股骨颈短缩程度分别为4.07±1.98mm和8.08±3.54mm,Ⅰ组及Ⅱ组在股骨颈水平平面短缩平均分别为3.90±1.57mm和7.77±3.31mm,Ⅰ组显著低于Ⅱ组,差异有统计学意义(P<0.05);末次随访时Ⅰ组的髋关节Harris评分高于Ⅱ组,差异有统计学意义(P<0.05)。结论:与Gotfried阴性复位相比,阳性支撑复位手术成功率高,且能明显预防股骨颈短缩、改善髋关节功能;在移位性股骨颈骨折闭合复位中,阳性支撑复位可以接受,而阴性支撑复位应尽量避免。(二)股骨颈骨折阳性支撑复位生物力学试验评价目的:在本研究中,我们评估了阳性支撑复位、阴性支撑复位、解剖复位在Pauwels Ⅰ型股骨颈骨折模型中的生物力学效果。方法:24例第四代人工合成复合股骨被平均分为3组,按照Pauwels 30°角截骨后形成股骨颈骨折;根据不同的复位标准分为阳性支撑复位组、解剖复位组及阴性支撑复位组,所有骨折模型均采用3枚倒三角构型的平行空心钉固定。采用生物力学方法(轴向加载试验、极限载荷试验)对样本进行评价,评价指标包括结构刚度、骨折最大位移(水平位移和垂直位移)及极限载荷,并采用方差分析对结果进行比较(P<0.05)。结果:研究表明阳性支撑复位组的结构刚度、骨折最大位移及极限载荷与解剖复位组相似,两组结果无统计学差异(P>0.05);两组的结构刚度、极限载荷均高于阴性支撑复位组,而骨折最大位移均小于阴性支撑复位组,差异显著有统计学意义(P<0.01)。结论:与阴性支撑相比,阳性支撑复位及解剖复位有着更好的生物力学强度,并且阳性支撑模型组与解剖复位模型组有着相似的生物力学强度。第二部分 基于Pauwels分型相关的股骨颈骨折阳性支撑复位有限元定量研究(一)股骨有限元模型的建立及有效性验证目的:根据正常人体股骨CT数据,建立股骨有限元模型,并进行尸骨的有效性验证。方法:采集一名志愿者的股骨CT数据,利用Mimics 17.0、Hypermesh 12.0等软件构建股骨实体模型并进行网格划分,再提交Abaqus 6.9软件进行有限元分析,在1400N的应力下行轴向加载试验;在股骨颈中段环形标记8个等分点,比较有限元分析与尸骨加载后标记点的等效应力值及变化规律。结果:采用有限元分析与尸骨加载后股骨颈中段8个环形标记点的等效应力值较为接近,且两者数据的变化规律相似,该规律与以往文献中提供的数字规律也基本一致。结论:股骨有限元模型建立并被验证有效,该模型可以进行后续的有限元分析试验。(二)不同Pauwels分型股骨颈骨折阳性支撑复位有限元生物力学定量研究目的:在本研究中,我们评估了不同移位程度的阳性支撑复位、阴性支撑复位、解剖复位在三种Pauwels分型股骨颈骨折中的生物力学效果,以此来进行阳性支撑复位定量研究。方法:采用 Mimics 17.0 和 Hypermesh 12.0 软件创建了三种 Pauwels 分型(Pauwels 30°、Pauwels 50°、Pauwels 70°)各五种股骨颈骨折复位模型,按照骨折移位程度分为阳性支撑3种复位模型(2mm,3mm,4mm)、解剖复位模型及阴性支撑复位2mm模型;均装配3枚倒三角构型的平行空心钉固定,共得到15种复位固定有限元模型,利用Abaqus 6.9软件进行有限元分析。予以轴向2100N的应力,研究不同模型内固定的应力分布和应力峰值、骨折块之间的位移、股骨颈近端松质骨模型的主应变。结果:研究表明在Pauwels Ⅰ型及Ⅱ型股骨颈骨折模型中,内固定应力峰值及最大位移值由大到小均依次为阳性4mm、阴性2mm、阳性3mm、阳性2mm及解剖复位模型;阴性2mm模型的内固定应力峰值及最大位移值均介于阳性3mm及阳性4mm模型之间;在PauwelsⅢ型股骨颈骨折模型中,阳性2mm模型的内固定应力峰值及最大位移均小于阴性2mm模型,而阳性3mm模型与阴性2mm模型两者数值较为接近;所有模型股骨颈近端松质骨应变区域均主要集中在钉孔周围,钉孔周围区域易被切割,且随着Pauwels角的增大,屈服应变区域逐渐增大。并且随着Pauwels角的增大,骨折内固定应力峰值及最大位移均明显增大。结论:与阴性支撑相比,阳性支撑复位有着更好的生物力学强度;根据结果进行阳性支撑复位定量分级,阳性复位Ⅰ级(移位≤2mm),阳性复位Ⅱ级(2mm<移位≤3mm),阳性复位Ⅲ级(3mm<移位≤4mm),阳性复位Ⅳ级(移位>4mm);在PauwelsⅠ型及Ⅱ型股骨颈骨折模型中,阳性复位Ⅰ级也可以维持相对稳定的生物力学效应,阳性复位Ⅱ级为相对可以接受范围,而阳性复位Ⅲ级及Ⅳ级应尽可能避免;而Pauwels Ⅲ型股骨颈骨折模型中,应尽可能控制在阳性复位Ⅰ级。Pauwels Ⅲ型股骨颈骨折模型承受着较高的内固定应力,骨折位移明显增大,并且股骨近端松质骨屈服应变区域明显增大,因此需要更为坚强的内固定来维持稳定性。第三部分基于Pauwels Ⅲ型股骨颈骨折特点相匹配的一种新型钢板的研制及设计目的:基于Pauwels Ⅲ型股骨颈骨折的解剖特点,设计并研制一种新型股骨颈钢板,为治疗该型骨折提供一种新的选择。方法:根据有关研究中提供的股骨上段解剖参数及解剖学特点,融合Pauwels螺钉结构及锁定钢板的优势,设计一块既能够术中垂直骨折线加压,又能对抗强大剪切应力的钢板,并研制生产后进行人工股骨模拟操作。钢板包括三枚股骨头方向螺孔及一枚股骨干锁定螺孔;其中股骨头最上面一枚螺钉为直径7.3mm的普通半螺纹加压螺钉,可以实现术中加压;另两枚为直径7.3mm的半螺纹锁定螺钉,该螺钉可以对股骨头起到强大角度支撑作用,锁定角度为135°;钢板最远端设计一枚锁定孔,通过植入直径5.0mm锁定螺钉将股骨与钢板连为一体。结果:所研制的新型股骨颈钢板与股骨粗隆部外侧壁解剖形态一致性较高,与股骨外侧壁外形贴合度好;按照操作方法模拟植入钢板螺钉后,能加压收紧骨折端,通过术后C臂机透视确定骨折端复位良好,螺钉分布位置好。结论:新型股骨颈钢板可能会是一种治疗Pauwels Ⅲ型股骨颈骨折优良的内固定器械。第四部分新型股骨颈钢板生物力学稳定性评价(一)新型股骨颈钢板固定Pauwels Ⅲ型股骨颈骨折的生物力学试验研究目的:在本研究中,我们评估了新型股骨颈钢板、动力髋螺钉加防旋钉、Pauwels螺钉结构在治疗Pauwels Ⅲ型股骨颈骨折中的生物力学效果。方法:24例第四代人工合成复合股骨被平均分为3组,按照Pauwels 70°角截骨后形成股骨颈骨折,各组分别采用新型股骨颈钢板(A组)、动力髋螺钉加防旋钉(B组)、Pauwels螺钉结构(C组)固定。采用生物力学方法(轴向加载试验、极限载荷试验)对样本进行评价,评价指标包括结构刚度、骨折最大位移(水平位移和垂直位移)及极限载荷,并采用方差分析对结果进行比较(P<0.05)。结果:研究表明A组的结构刚度、骨折最大位移及极限载荷与B组相似,两组结果无统计学差异(P>0.05);两组的结构刚度、极限载荷均高于C组,而骨折最大位移均小于C组,差异显著有统计学意义(P<0.001)。结论:新型股骨颈钢板治疗Pauwels Ⅲ型股骨颈骨折,生物力学强度与动力髋螺钉加防旋钉相似,优于Pauwels螺钉结构。(二)新型股骨颈钢板与Pauwels螺钉结构多种截骨模型的有限元生物力学比较目的:应用有限元分析的方法比较不同截骨模型新型股骨颈钢板与Pauwels螺钉结构治疗Pauwels Ⅲ型股骨颈骨折的生物力学稳定性。方法:采用 Mimics 17.0 和 Hypermesh 12.0 软件创建了 Pauwels 角为 50°、60°、70°三种股骨颈骨折截骨模型,然后装配新型股骨颈钢板及Pauwels螺钉结构形成固定模型;利用Abaqus 6.9软件进行有限元分析。予以轴向1400N及2100N的应力,研究不同模型内固定的应力分布和应力峰值、骨折块之间的位移、股骨颈近端松质骨应力分布和应力峰值。结果:研究表明两组内固定的应力分布主要集中于骨折线附近,最接近股骨距的螺钉承受应力最大;在Pauwels角为50°、60°、70°三种模型中,新型钢板组的内固定应力峰值及股骨近端松质骨应力峰值均低于Pauwels螺钉组,骨折块之间的最大位移均小于Pauwels螺钉组。结论:相对于Pauwels螺钉结构固定组,新型股骨颈钢板对不同的Pauwels Ⅲ型股骨颈骨折截骨模型固定均能提供更强的生物力学稳定性。
其他文献
研究背景和目的神经母细胞瘤(neuroblastoma,NB)是儿童期常见的颅外实体肿瘤之一,尤多见于5岁以下婴幼儿。NB最大的特点为临床表现、预后具有明显的异质性,一部分患者的病变可
低速电动汽车以低能耗高环保特性突破了传统燃油汽车因生态能源问题导致的发展瓶颈,逐步成为了汽车工业的新发展方向。电动汽车以基于驱动电机的电池与电子控制系统取代了传
研究背景:疼痛给现代人类带来了巨大的痛苦,严重影响了人们的生活质量。慢性疼痛是许多慢性疾病的常见伴随症状,目前就世界范围来看,慢性疼痛的患者远远多于患有糖尿病、心脏
冠状动脉粥样硬化性心脏病简称冠心病,已成为目前全球导致死亡最多的疾病之一,临床治疗方法包括药物治疗、介入治疗和外科手术治疗。胺碘酮(Amiodarone,AMD)是Ⅲ类(钾通道阻
目的:将 RFP(RIFAMPICIN/Rifampin,利福平)作为主药,使用 PDLLA(Poly-DL Lactic Acid外消旋聚乳酸)、nHA(nano-hydroxyapatite纳米羟基磷灰石)作为DDS(Drug Delivery System,
目的:比较两种间充质干细胞(Mesenchymal Stem Cell,MSC)[骨髓间充质干细胞(Bone Marrow Mesenchymal Stem Cell,BMSC)与脐带间充质干细胞(Umbilical Cord Mesenchymal Stem
随着大数据时代的来临,大数据已经在很多行业有着广泛应用,比如无人驾驶,语音识别,智能医疗,智能交通,犯罪预测,金融科技等。目前大数据在金融行业的主要应用有量化投资,企业
活性物质系统由一类自我驱动的单元组成。这类系统远离平衡态,展现出大量有趣的非平衡特征,比如巨涨落,相分离,超扩散等。当前的一个研究热点是,活性物质和非活性物质的混合
目的分析可能影响可切除T1-3N0-2M0[依据第八版美国癌症联合委员会(AJCC)/国际抗癌联盟(UICC)肺癌原发肿瘤-区域淋巴结-远处转移(TNM)分期]非小细胞肺癌(NSCLC)患者预后的相
基于液滴的微流控技术是一种实现微升或纳升级别液滴独立操作的新技术,具有样品消耗少、反应速度快、可操作性强等优点,在各种生物化学实验中得到广泛应用。液滴自驱动技术作