论文部分内容阅读
溴化锂吸收式制冷机具有热效率高、热源广泛、能耗低以及零排放等优点,近年来得到广泛的应用。为了进一步提高溴化锂吸收式制冷机的热效率,制冷业研究发展三效式和多效式制冷循环。在优化设计的三效式制冷循环中,制冷机最高工作温度达到180℃,溴化锂溶液浓度也更高。而作为强腐蚀性介质,高浓度溴化锂溶液在三效式和多效式循环条件下会引起碳钢、铜以及铜合金等金属材料严重的腐蚀。这一问题制约了溴化锂吸收式制冷机技术的发展,已引起人们的重视。 采用化学浸泡实验、电化学测试技术和扫描电镜(SEM)、X射线衍射(XRD)、电子探针(EPMA)以及红外光谱(IR)等检测技术,对Li3[PMo12O40]与SbBr3复合缓蚀剂(PMA/SbBr3)、强化溶解Li2MoO4缓蚀剂(E-Mo)、Na3[PW12O40](PWA)、H4[PW11VO40](PWVA)和PWVA/Sb2O3复合缓蚀剂在高温55%LiBr+0.07mol/L LiOH溶液中对SS41碳钢、磷脱氧铜和白铜的缓蚀行为进行研究,并探讨了缓蚀机理。结果表明,PMA/SbBr3、PWA、PWVA和PWVA/Sb2O3缓蚀剂能够同时抑制碳钢、铜和白铜在55%LiBr+0.07mol/L LiOH溶液中的阴极和阳极反应过程,属于混合型缓蚀剂。E-Mo只能抑制阳极反应过程,而对阴极反应过程无影响,属于阳极型缓蚀剂。 PMA/SbBr3缓蚀剂对碳钢在55%LiBr+0.07mol/L LiOH溶液中具有优异的高温缓蚀性能,对铜和白铜的腐蚀也具有较高的缓蚀效率。实验温度范围内,碳钢在含PMA/SbBr3缓蚀剂的55%LiBr溶液中腐蚀反应的动力学方程式为lnk=11.447-3561.4/T,反应表观活化能Ea=29.61kJ/mol。PMA/SbBr3缓蚀剂使碳钢在55%LiBr+0.07mol/L LiOH溶液中的反应表观活化能增大,腐蚀反应进行的难度增大。 55%LiBr溶液中添加20m/L 2-聚丙烯酸调聚物,Li2MoO4在55%LiBr溶液中的溶解度提高到850mg/L,得到E-Mo缓蚀剂。E-Mo缓蚀剂对碳钢在55%LiBr+0.07mol/LLiOH溶液中的腐蚀具有优异的缓蚀性能,尤其是溶液温度超过180℃时仍具有很高的缓蚀效率。溶液温度为240℃时,碳钢的腐蚀速度仅33.07μm/a,缓蚀效率仍高达91.5%。E-Mo对铜和白铜的腐蚀也具有一定程度的抑制作用。55%LiBr溶液中,碳钢的腐蚀电流密度icorr与腐蚀电势Ecorr之间的关系方程为lgicorr=-2.66-3.54Ecorr,阴极析氢反应塔菲尔常数βc=282mV。 在55%LiBr+0.07mol/L LiOH溶液中,PWA缓蚀剂浓度为300mg/L时,对碳钢和白铜具有优异的缓蚀性能,对铜的腐蚀也具有一定程度的抑制作用。溶液温度为180℃时,碳钢腐蚀速度仅24.55μm/a,缓蚀效率为86.4%。PWA具有强氧化性,在55%LiBr+0.07mol/L LiOH溶液中使碳钢表面生成完整致密的Fe2O3钝化膜,铜表面沉积CuO和