论文部分内容阅读
水下焊接技术是海洋工程建设的一种重要手段,主要包括湿法、干法与局部干法三种方法,而湿法焊接由于其设备简单、操作方便、成本低等一系列优点,被广泛应用于海洋工程结构当中。由于水环境的冷却、气泡上浮、电弧漂移等一系列原因,水下湿法焊接过程具有焊接飞溅大、焊缝成形差、易断弧等问题。作为焊接传质传热的重要途径,熔滴过渡的稳定性很大程度上会影响焊接质量。通过建立合理的数学分析模型,对水下湿法焊接熔滴过渡过程进行数值模拟,定量分析影响熔滴过渡的物理量以及熔滴动态演变规律,具有重要的理论意义和实用价值。本文根据流体力学与电磁学基本理论,建立了水下药芯焊丝湿法焊接熔滴过渡过程的三维数值分析模型,考虑重力、表面张力、电磁力以及气泡上浮对熔滴过渡的影响。并且针对水下焊接过程中复杂的环境进行适当简化与假设处理。在流体力学分析软件ANSYS FLUENT中,通过对软件进行二次开发将熔滴过渡受力受热条件进行合理设定。采用有限体积法对微分方程进行离散化处理,利用VOF法追踪两相界面,并且通过PISO算法进行求解。定量分析了水下药芯焊丝湿法焊接熔滴在各种驱动力的作用下不断长大,最后脱离焊丝落入熔池的物理过程。数值模拟结果显示,在水下湿法焊接过程中,焊接电弧始终位于熔滴的底部,不能将熔滴包裹,电弧形态较为拘束。焊丝端部受到电弧的加热而熔化并且在表面张力的作用下趋向于半球形,由于电弧能量的集中分布导致熔滴受到的轴向电磁力为阻碍熔滴过渡的作用力。同时,在焊接过程中,电弧下方的水被快速加热分解,加之熔池受热也会释放出气体,由于水压的存在使得这些生成的气体不能向四周自由扩散,而是以气泡的形式向上运动,高速流动的气流作用在不断长大的熔滴上,形成阻力。在层流状态下,即雷诺数较小时,流动速度较快的流体会对流动速度较慢的流体产生拖曳作用,阻碍熔滴过渡,使得熔滴脱落困难,最终形成大滴状过渡。最后通过高速摄像机与电信号传感器对熔滴过渡过程进行视觉信号与电信号进行采集,验证了模型的可靠性。