【摘 要】
:
发展与环境相互协调,是实现可持续发展的前提。随着社会经济的快速发展,人们的生活质量也得到了极大提升。但是不适当或者不受控制的发展会对生态循环造成不利影响,并会阻碍国家社会和经济的进一步发展,还会对人类健康产生严重威胁。醇类气体如乙醇(C2H5OH)、丙醇(C3H7OH)、正戊醇(C5H11OH)等,作为一类常见的挥发性有机化合物,被广泛应用于有机合成过程中,用作溶剂和萃取剂。醇类气体的蒸气或雾气不
论文部分内容阅读
发展与环境相互协调,是实现可持续发展的前提。随着社会经济的快速发展,人们的生活质量也得到了极大提升。但是不适当或者不受控制的发展会对生态循环造成不利影响,并会阻碍国家社会和经济的进一步发展,还会对人类健康产生严重威胁。醇类气体如乙醇(C2H5OH)、丙醇(C3H7OH)、正戊醇(C5H11OH)等,作为一类常见的挥发性有机化合物,被广泛应用于有机合成过程中,用作溶剂和萃取剂。醇类气体的蒸气或雾气不仅会对眼睛、皮肤、呼吸道粘膜产生刺激,还可能引起头痛、头晕、呼吸困难、恶心、呕吐等症状。人类长时间处于或者突然置于高浓度醇类气体氛围中,可能导致复视和高铁血红蛋白白血病。因此,实现对醇类气体的准确检测对人体健康方面有重大意义。检测醇类气体的方法多种多样,与其它大型检测仪器相比,气体传感器凭借其成本低廉、体积小、可集成化、可以实现实时监测等优点被广泛研究。其中氧化物半导体气体传感器具有检测下限低、全固态等优点,在检测醇类气体方面展现出巨大潜力。众多研究者致力于氧化物半导体气体传感器器件性能的提升,通过调控氧化物半导体材料的微纳结构、对氧化物半导体材料进行掺杂和修饰,可以改变其比表面积、表面氧种类和禁带宽度等,实现对氧化物半导体气体传感器器件性能的提升。本文以n型氧化物半导体ZnO作为传感材料,通过调整ZnO敏感材料烧结时的升温速度和对ZnO敏感材料进行掺杂,实现了对ZnO纳米材料电子分布的调整,优化了ZnO基气体传感器的器件性能,主要工作内容如下:1.使用水热法制备了ZnO纳米花,纳米花直径约为6μm,纳米花是由多孔纳米片组成的三维结构。通过改变ZnO敏感材料烧结时的升温速度,提升了传感器的器件性能。在300℃下,烧结时升温速度为5℃min-1的ZnO纳米花对100ppm正戊醇的响应为22.1,烧结时升温速度为1℃min-1和10℃min-1的ZnO纳米花对100 ppm正戊醇的响应分别为5.1和3.9。气敏性能的提升可以归因于,烧结时升温速度改变了ZnO纳米花敏感材料表面吸附氧的含量。2.使用水热法制备了Ce掺杂ZnO纳米花。通过改变Ce和Zn的原子摩尔比,Ce和Zn的原子摩尔分别为0.5%、1%、3%、5%,经气敏测试发现传感器的器件性能得到了提升,在300℃时Ce和Zn的原子摩尔比为3%的Ce/ZnO纳米材料(3 at%Ce/ZnO)对100 ppm正丙醇的响应为28.1,并且显示了良好的重复性,其响应约是未掺杂ZnO纳米材料对正丙醇响应(7.1)的4倍。
其他文献
在石油化工、航空航天和能源等领域,由于304不锈钢拥有优异的抗高温氧化性和耐腐蚀性能,成本相对较低且易于制造,因此被广泛应用。目前科技的发展非常快速,材料需要在更加严苛的环境下应用,满足更高的工作温度要求,因此提高304不锈钢的抗高温氧化性能尤为重要。本文采用溶胶-凝胶法在304不锈钢表面分别制备了Al2O3薄膜、Cr2O3薄膜、SiO2薄膜以及按照不同Ce/Al摩尔比(1:9、1:10、1:11
雷达辐射源识别作为现代电子战争的一个重要组成部分,在接收装置截取到敌方雷达辐射源信号之后,还需要进一步分析信号,来获得雷达辐射源信号类型等信息。近几十年来,随着雷达技术的不断更新换代,各种新型雷达被用于战场,导致现代战场面临的电磁环境变得日益复杂。采用传统手动提取并选取特征的方法,会面临识别速度较慢、识别精度较低和低信噪比时难以识别等问题,很难适应现代战场瞬息万变的形势。因此,如何准确快速的识别雷
随着全球能源问题的日益严重,储能材料领域成为了科研人员关注的研究热点。其中储能材料循环寿命作为储能材料电化学性质的重要参数之一,可以有效判断储能材料投入生产后所能完成的实际价值。由于现市售的相关仪器中,没有专门针对储能材料循环寿命这一电化学性质进行单独测试的仪器,并且现有仪器无法兼容测试储能材料电极与元器件的方法,使得仪器适配范围存在局限性。因此本文设计了拥有六条独立测试通道的新型测试仪器,在兼容
辐射源信号识别在电子对抗侦察领域中具有十分关键的作用,通过识别雷达信号获取战场中的各种信息,是指挥决策的关键依据。早期战场电磁环境相对简单,传统方法主要通过人工提取辐射源信号特征,再与雷达数据库比对识别雷达信号,具有较好的识别能力。但是随着雷达技术的不断创新,各种基于新技术的雷达不断应用到实际中,且有的信号难以被侦收,电磁环境日益复杂,这类方法的识别速度和识别精度逐渐不能满足识别要求,可靠性大幅度
随着我国石油的使用量与日俱增,石油开采逐渐由浅海向深海过渡。在深海石油开采平台中,采用自升式海洋钻井平台为主要开采模式,其升降齿条安全运行是开采平台运行的重要保证,但由于深海环境腐蚀和应力耦合的复杂性给升降齿条的使用寿命带来了巨大挑战。国产厚度为114.5 mm的A514CrQ齿条钢作为升降齿条重要加工材料,该钢的基础性能研究已经初步完成,但是至今还未开展疲劳及腐蚀疲劳性能的研究。本文介绍了齿条钢
本研究基于现有的文献资料,并借鉴国内外学者相关研究成果,通过调查研究找出目前基于学生自主性发展的小学班级文化建设的不足之处,分析其产生的原因,力争为小学班主任教师和学校管理者提供可操作性强的建设策略,提高班主任教师班级建设能力和学生自主性发展素养。本论文采用文献研究法、观察法、问卷调查法和访谈法进行研究,以问卷调查和访谈为主,观察为辅。通过观察法,初步探知各班班级文化建设的现状,找出显而易见的问题
为了解决漫射衰减系数K的反演依赖于原位测量数据的问题,提出了一种基于Klett和Fernald法反演K的融合算法。该融合算法以Klett法反演结果为基准,计算出激光雷达比作为Fernald法迭代时的先验信息,再用Fernald法反演出更加精确的水体漫射衰减系数K。并运用数学解析模型作为融合算法的仿真数据源,解决了实测信号数据量不足的问题,。最后,基于自研的双频激光雷达系统,利用海试数据对融合算法进
近二十多年来,易挥发性有机化合物(VOCs)的排放、工厂产生的工业废气以及汽车尾气不仅对人们赖以生存环境造成了污染还严重影响了人们的健康安全。为了监控和探测这些污染气体,气体传感器顺应时代潮流获得巨大发展,其中金属氧化物半导体(MOS)气体传感器因其低成本,小体积,工艺简单等优点而受到包括食品安全检测,生物医疗诊断,大气环境监测等在内的众多领域的青睐。但纯的金属氧化物半导体气体传感器通常存在响应速
电缆在我国制造工业领域有着非常重要的位置,是国家电网的必须品,是信息传输系统的传递媒介,是许多大型设备的内部组成部分。聚乙烯交联电缆是在二十世纪六十开始出现在中国,1971年,利用蒸汽交联法的制作手段,上海电缆厂与沈阳电缆厂联合制造出第一条较为成熟的35k V聚乙烯交联电缆,时至今日,生产技术已经非常成熟。在本课题中,所使用的系统就是一套非常成熟三层共挤悬链式干法高压交联电缆生产线控制系统。PID
抗生素菌渣具有污染性和资源性的双重属性。随着我国制药行业的进一步发展,抗生素菌渣的减量化、无害化和资源化的末端处理处置已成为制约制药行业发展的重要因素。抗生素菌渣富含蛋白质,对其进行资源化回收利用,是抗生素菌渣处理的关键。然而,由于超声、碱热和微波等方法存在能耗高,设备占地大等问题。因此,本研究在课题组前期研究的基础上以链霉素菌渣为研究对象,选用嗜热菌DF7,取其胞外蛋白酶对菌渣进行破壁溶胞。研究