【摘 要】
:
门式起重机广泛应用于社会生产的各种场合。随着经济的发展,一方面更大更多的门式起重机投入使用,另一方面对安全生产的要求不断提高。因此对门式起重机设计可靠性研究就显得很有必要。而且门式起重机主要是由金属板件焊接而成的复杂结构,结构的可靠度在一定程度上能反映门式起重机的整机可靠性,故对其进行可靠度计算非常重要。响应面法是一种用于求解没有明确表达式且输入与输出的变量是高度非线性关系的复杂结构的可靠度计算方
论文部分内容阅读
门式起重机广泛应用于社会生产的各种场合。随着经济的发展,一方面更大更多的门式起重机投入使用,另一方面对安全生产的要求不断提高。因此对门式起重机设计可靠性研究就显得很有必要。而且门式起重机主要是由金属板件焊接而成的复杂结构,结构的可靠度在一定程度上能反映门式起重机的整机可靠性,故对其进行可靠度计算非常重要。响应面法是一种用于求解没有明确表达式且输入与输出的变量是高度非线性关系的复杂结构的可靠度计算方法。遗传算法是广泛用于极限值求解的现代化智能算法。本文用遗传算法代替响应面法中求解可靠度数据迭代的部分,形成了遗传算法改进响应面法计算结构可靠度的新方法。实例证明这样的改进能极大地提高可靠度求解效率。通过经典的蒙特卡罗法求解同一模型的可靠度,验证了本文改进响应面法的有效性。本文以门式起重机作为研究对象,应用可视化编程语言,利用尺寸驱动法,建立了基于三维建模软件的门式起重机结构参数化实体模型。用程序将实体模型导入有限元分析软件建立门架结构的有限元力学模型,利用计算软件之间的多次的数据交换处理,搭成求解门式起重机结构基于遗传算法改进的响应面模型,求解获得其可靠度来分析结构的可靠性。同时还将改进响应面法计算程序与模型参数化程序进行汇编,形成一个用于计算系列的门式起重机结构可靠度的分析系统。只需将建模、计算与分析所需的一系列参数输入系统中对应的窗口,就可以获得此次设计的门架结构的可靠度。避免了以往依靠经验给出的安全系数带来的弊端,为门架结构设计提供一个比较明确的可靠性理论支撑。门式起重机结构可靠度分析系统提高了门架结构的设计效率,一定程度上也提高了门式起重机作业现场的安全性。本文提出了门式起重机结构可靠度计算的新方法,编制了基于改进响应面法的系列双梁门式起重机结构可靠度分析系统,用工程实例验证了其有效性。该系统能提升新产品开发的效率,具有比较高的工程应用价值。
其他文献
随着工业传感器、自动控制系统、工业互联网等信息技术在工业领域的广泛应用,海量的刀具传感器信号被实时采集并传输,由于采集到的数据本身存在离群数据,并且在数据传输过程中往往会存在一些数据缺失现象,导致在刀具加工过程中无法准确的预测刀具剩余使用寿命。因此将采集到的刀具传感器信号进行空缺数据填充及离群数据检测能提高刀具剩余使用寿命预测的准确性,并对提高工件的加工精度与生产的加工效率具有重要意义。本文以铣削
环境严重污染和能源消耗危机的存在,导致绿色、无公害、纯天然的太阳能资源的使用逐渐增加。近些年来,有机太阳能电池(OSCs)因其制作成本低、可低温加工、可柔性制备等特点,且柔性有机太阳能电池在智能化可穿戴设备、便携式电子器件、建筑光伏领域和军事化应用等方面具有广阔的应用前景,吸引了人们广泛的关注,成为太阳能电池研究的热点。其中,高性能(高透明度和低电阻值)透明电极是制备高效率柔性有机太阳能电池的重要
本课题从探究异质结构材料背后的强韧化机制出发,探索一种制备异质叠层结构高熵合金板材的新工艺,改善CoCrFeMnNi高熵合金强-韧塑性匹配关系。应用磁悬浮熔炼技术,获得组织成分均匀的CoCrFeMnNi高熵合金铸锭,随后对铸锭进行冷轧及退火再结晶。创新性地设计了一种工艺,即层叠冷轧态和退火态板材,通过热压焊合、冷轧形变,结合最后的热处理工艺成功制备了一种异质叠层结构CoCrFeMnNi高熵合金板材
改革开放以来我国经济飞速发展,智能化设计逐渐进入人们视野,因此智能化设计这个市场的规模也越来越多大,服务范围也逐渐多元。如何应对用户的各种需求,为用户提供质量高、可靠性高的设计和产品是当前这个领域面临的问题。本文以1450mm薄带轧机AGC控制系统的智能化设计作为研究对象,完成了1450mm薄带轧机AGC控制系统的虚拟装配,并在智能化设计的基础上对控制系统的温度场进行分析与仿真。首先,对智能化设计
车轮作为高铁的重要部件,对列车的安全运行有很重要的影响。随着高铁运行速度的不断提高,其安全性更加受到人们的重视。针对目前速度350km/h的高铁对车轮安全性提出的特殊要求,本文在总结前人对高铁车轮缺陷检测的基础上,将超声检测技术应用到了车轮缺陷检测中,研究了高铁车轮轮辋表面和内部的缺陷检测的方法。(1)首先利用有限元仿真软件COMSOL对激光超声以及相控阵超声的检测过程进行数值模拟。在激光超声检测
逆变弧焊电源是为焊接电弧提供电能的装置,是电焊机的核心组成部分,其电气特性对焊接质量有重要影响,SiC MOSFET逆变弧焊电源是具有应用前景的高新技术产品,也是该学科领域研究热点。本文进行的SiC MOSFET逆变弧焊电源电气特性数值模拟研究对促进新型逆变弧焊电源开发与应用具有重要意义。本文基于MATLAB/Simulink软件建立了SiC MOSFET逆变弧焊电源的主电路及其控制系统模型;采用
金刚石具有宽禁带、高热导率、高载流子迁移率、高本征温度和高击穿电压等优点,其在电子器件、高频微波器件和高温大功率器件等领域有着广阔的应用前景。氮是金刚石中最常见的杂质原子,在天然和人造金刚石中都普遍存在,因此研究氮掺杂金刚石具有重要的研究意义。晶体中氮杂质的存在会造成晶格畸变,在其邻近位置经常存在一个空位,即氮-空位缺陷(NV色心)。NV色心不仅仅有稳定的光学特性,更重要的是其在室温下是一种理想的
金刚石作为第四代半导体材料,凭借其优异性能,使得金刚石器件在量子计算机、5G通讯、半导体照明等领域中有广泛应用。对于半导体来说,由于晶体生长过程不易操控缺陷的产生,因此经常采用先辐照后退火来调控半导体器件的宏观性能。MeV高能电子能量辐照会引起金刚石中碳原子的多级碰撞而形成复杂的缺陷色心,而近阀能电子辐照只会引入简单孤立的点缺陷,有利于研究金刚石的缺陷色心。因此,本论文以微波等离子体化学气相沉积法
全球的天然气储量十分丰富,甲烷(CH4)作为天然气的主要成分,不仅是一种重要的清洁能源,而且也是重要的化工原料之一,从甲烷可转化成许多高附加值的化工产品,与此同时CO2的大量排放导致严重的“温室效应”,迫切需要加以利用。由于普通光催化的量子效率偏低,对光的利用率也较低,而激光具有单色性好、亮度高、发散性小等优良特性,有望显著增加光催化的量子效率,从而提高反应物转化率和产物收率,同时降低反应时间,将
由于油膜轴承在运行过程中具有运行稳定、可靠性高、噪声小等优点,且衬套表面处于完全润滑状态,有效地减小了工作中的摩擦损耗,因此被广泛地应用在大型的水利水电、航空航天工程及重型机械等行业领域。轴瓦作为油膜轴承的重要组成部件,其稳定性直接影响轧制生产线的安全可靠的运行。然而,油膜轴承在复杂多变的实际工况中,在其最易受损和失效的部位中,除了衬套的表面之外还有覆层与基体层的结合界面。在衬套的传统成型工艺中,