【摘 要】
:
随着玻璃纤维复合材料(GFRP)在航空领域应用的扩大化,将不可避免地面临各种特殊环境因素的挑战,在飞行安全性方面对GFRP性能提出了更高的要求。目前研究结果显示,碳纳米管因其多孔结构易与树脂结合形成增强界面,同时可以在材料内部引入大量微观界面,能够提高GFRP的力学性能和阻尼性能。因此本文将碳纳米管制作成增强薄膜预埋在GFRP层间,并与炭黑薄膜进行对比,研究低温循环后和盐雾条件下两种增强薄膜对GF
论文部分内容阅读
随着玻璃纤维复合材料(GFRP)在航空领域应用的扩大化,将不可避免地面临各种特殊环境因素的挑战,在飞行安全性方面对GFRP性能提出了更高的要求。目前研究结果显示,碳纳米管因其多孔结构易与树脂结合形成增强界面,同时可以在材料内部引入大量微观界面,能够提高GFRP的力学性能和阻尼性能。因此本文将碳纳米管制作成增强薄膜预埋在GFRP层间,并与炭黑薄膜进行对比,研究低温循环后和盐雾条件下两种增强薄膜对GFRP力学性能和阻尼性能的影响。首先,阐述了复合材料阻尼产生的机理,建立了预埋碳纳米管薄膜(CNTF)的GFRP单元体微观模型。主要考虑碳纳米管与基体脱粘后摩擦耗能和碳纳米管端部基体的应变集中耗能,推导出预埋CNTF的GFRP层合板的阻尼数值模型,并确定了本文阻尼测试方法,为后续深入研究奠定了理论基础。其次,制作了预埋CNTF、炭黑薄膜的GFRP层合板,并将层合板通过低温循环处理以模拟飞机真实起降的环境温度变化,随后进行悬臂梁弯曲实验和自由振动衰减实验。根据实验结果分析低温循环对GFRP层合板性能的影响以及两种增强薄膜的增强效果,同时结合扫描电子显微镜(SEM)图分析温度冲击和增强薄膜对层合板的影响机理。最后,将预埋不同增强薄膜的GFRP层合板进行不同周期的盐雾腐蚀处理,分别测试其经不同周期腐蚀后的增重率,之后进行悬臂梁弯曲实验和自由振动衰减实验。根据实验结果显示GFRP层合板的弯曲强度随盐雾腐蚀周期增加呈下降趋势,而损耗因子则与之相反,同时结合SEM图分析了盐雾对GFRP层合板的腐蚀机理。
其他文献
一战使沙俄消耗了巨大的人力物力,为扭转国内劳力短缺的局面和补充前线兵力,沙俄便开始了在华大规模招工。北洋政府为了应对一战期间俄国大规模招工,尽量避免或减少华工赴俄后产生的种种弊病,便出台了华工赴外工作章程等一系列政策,以期对沙俄在华招工的流程和合同进行规范和约束,以保障华工赴俄的权益。但是此种应对举措往往事与愿违,北洋政府为规范和约束沙俄招工而出台的章程和政策,只能应用在俄国为数不多的正式招工中。
推进剂贮箱是运载火箭的重要部件,质量大约占箭体结构总重的百分之六十左右,其轻质化水平决定着火箭的主要性能指标。为了研制轻质、高强、耐腐蚀、抗疲劳的贮箱,先进复合材料层合结构以及加筋层合结构壳体得到了越来越广泛的应用,在理论上精确计算层合结构以及加筋层合结构壳体的力学响应对提升贮箱的自主研发能力尤为重要。本文分别基于Tessler的精化锯齿层合板理论和Reddy的三阶剪切层合板理论建立了层合壳和加筋
第一次世界大战期间,大约有9.5万名英招华工在法国为英军工作。英招华工从中国前往法国的运输分为东西两条路线,有大约8.5万名英招华工是从东线前往法国的。东线运输从中国威海和青岛出发,东渡太平洋到达加拿大的西海岸,再通过铁路运输穿越北美大陆,然后再从加拿大的哈利法克斯东渡大西洋,到达英国的利物浦,之后换乘火车到达英国的福克斯通。从福克斯通华工再乘船渡过英吉利海峡前往法国的港口布伦。全程大约2.2万至
结构轻量化设计一直以来都是国内外学者们研究的热点问题。结构轻量化的目的是在保证结构件使用安全的前提下,使用尽可能少的材料来达到同样甚至更好的受力效果。在结构件初始设计过程中,拓扑优化可以让工程师通过给定材料的体积比,从设计域中去除不必要的材料,从而得到质量更轻、强度上满足要求的新结构。然而,目前的拓扑优化算法多是以每个单元的密度作为变元,从而逐个考察单元的“生”、“死”,这需要不断去除低效材料单元
随着新能源产业的快速发展,电动飞机应运而生。驱动系统是电动飞机的心脏,其可靠性直接影响电动飞机能否安全可靠地飞行。对驱动系统进行可靠性分析研究,找出潜在的设计漏洞和薄弱环节,可为电动飞机可靠性水平的持续增长提供设计依据。本文针对电动飞机永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)驱动系统,在系统可靠性建模与仿真、反馈环处理和组件重要度评估等方面进行
在飞行过程中,飞行器机翼质量的改变会引起结构模态属性的变化,尤其是对于某些质量突然变化的情形(例如外挂物释放),结构的低阶固有频率会发生大的跃迁,直接影响到机翼的颤振速度和颤振频率。并且,在受到外激励作用时(例如阵风),机翼上各点的动态响应也将发生大的变化。本文基于弯扭组合梁元和片条理论建立了大展弦比直机翼的颤振模型,并基于薄机翼平板模型建立了大型运输机机翼的颤振模型和阵风响应模型,分析外挂物质量
由于Si可以与镁合金中的Mg结合,生成耐高温、强度大的Mg2Si相,而被越来越广泛的应用于提高镁合金高温性能。但是,但传统铸态下的初生与共晶Mg2Si组织形貌粗大,严重制约了其在工程上的使用。因此,改善初生和共晶Mg2Si相的尺寸和形貌成为一个关键问题。本文基于Ba、Nd、La对Mg-3Si-4Zn镁合金的变质处理,通过OM(OLYMPUS)、SEM(SIGMA)、EDS(X-Maxn)、XRD(
随着先进技术及制造技术的发展,飞机装配工装技术已经从主要以人工、半机械的装配方式改为机械、自动化装配的发展过程,飞机的装配技术已经成为了国内外飞机制造业的科技焦点。飞机在整个飞机制造过程由于其零件多、对精度要求高和个别飞机部件的尺寸大等原因,使得装配飞机零部件时间约占整个飞机制造过程的半成。因此,提高装配的质量与效率成为飞机制造业的首要问题。本文对飞机制造技术的研究内容与研究背景进行阐述,在此基础
随着航空工业的蓬勃发展,飞机对复合材料的强度、刚度、热稳定性等性能的要求越来越高。目前,高效制备基于碳纳米管(CNT)的玻璃纤维增强聚合物(GFRP)复合材料,优化层间断裂韧性以及防止其分层是国内外学者研究的热点,也是本文贯彻始终的研究重点。飞机从起飞到降落的过程中,其表面环境温度在高低温之间来回变化,而温度的急剧变化将使飞机上复合材料的性能面临严峻考验,这种由温度变化带来的影响也是本文关注的焦点
近年来,日益严重的抗生素污染已经对人体健康和生态安全构成了严重威胁。本论文选择两种典型抗生素阿莫西林(Amoxicillin,AMX)和磺胺氯哒嗪(Sulfachlorpyridazine,SCP)作为研究对象,首先采用溶剂热法和程序升温法合成了一系列锆基金属有机骨架(Zr-MOFs)和ZrOx/碳复合材料,进而考察了这些合成材料对低浓度目标污染物的吸附性能,探究了吸附机理,最后研究了环境因素对去