具有幂等元代数上的Jordanσ-导子

来源 :上海师范大学 | 被引量 : 0次 | 上传用户:jackyzero123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文主要讨论具有幂等元代数上的-Jordanσ导子.设Α是一个具有非平凡幂等元的代数.我们的主要结果是:在一定条件下,Α上的每一个-Jordanσ导子Δ都可唯一表成Δ=d+δ,其中d是Α上的σ-导子,δ是Α上的一个奇异-Jordanσ导子.此结果推广了Benkovic的关于三角代数上-Jordanσ导子的结果.作为主要结果的应用,我们给出了全矩阵代数上-Jordanσ导子的一个刻画.
其他文献
创作感言:我学习篆刻主要是从汉印入手,比较喜欢平正、工稳、静穆一路印风,所以我的取向多在汉私印和官印之间。这一路的印章整体气象表现出了一种光明正大之气,显现出严整庄
本文主要研究了带形状参数的Bezier曲线的扩展,在原有的基础上提出了四次Bezier曲线和n次Bezier曲线的一种新的扩展方法。第一章中我们主要介绍了计算机辅助几何设计的主要发
随着量子密码学的不断发展,各种量子密码协议被提出。量子秘密共享协议就是秘密共享协议的量子版本,它要求分发者通过量子手段将一个秘密分发给多个参与者,只有部分事先确定的参与者通过合作才可以恢复出秘密。量子秘密共享协议的安全性由量子力学规律保证,此外,量子秘密共享协议的研究有助于量子保密通信过程中的密钥管理,因此越来越受到人们的重视。无论是经典秘密共享协议还是量子秘密共享协议,由协议设定的可恢复出秘密的
学位
近来,Kashina,Montgomery与Ng介绍了有限维Hopf代数的第n-指标,并给出了其若干重要性质.在此基础上,KenichiShimizu给出了Taft代数及单李代数sl2对应的小量子群uq(sl2)的第n-指
自然单元方法(NEM)是一种新型的无网格方法,其形函数具有很好的性质,因此受到越来越多的关注。本文重点介绍了NEM方法的基本概念和实现过程,并应用NEM方法分别求解了由椭圆变分
请下载后查看,本文暂不支持在线获取查看简介。 Please download to view, this article does not support online access to view profile.
时代在发展,教育理念也在不断进步和更新.小学体育教学也需要求新求变,只有这样才能实现小学体育的教学目标,才能提高学生的身体素质.从小学体育创新教学的意义出发,结合当前
随机微分方程的解析解一般难以求得,因此数值方法成为研究随机微分方程解的行为的主要工具之一,其中龙格库塔(Runge-Kutta)方法是求解随机微分方程的重要方法之一.另一方面,显
在人们的工作与生活中,逻辑思维能力能够起到非常关键的作用,所以在小学数学教学中,加强对学生逻辑思维能力的培养有着重要的现实意义.数学这门学科,对学生的逻辑思维能力、