异原子共掺杂g-C3N4的制备及其催化臭氧的性能和机理研究

来源 :武汉纺织大学 | 被引量 : 0次 | 上传用户:niujd
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目前非均相催化臭氧氧化因为氧化能力强的优点被广泛用于有害污染物去除。催化剂作为催化臭氧氧化过程中重要的活性组分,选择高效无害的催化剂非常重要。石墨碳氮化氮(g-C3N4)作为一个典型不含金属的层间聚合碳质材料,已经成为研究热点。然而原始的g-C3N4由于缺乏活性位点,很少应用在催化臭氧化过程中。因此本文通过异原子掺杂g-C3N4提高催化臭氧活性,其主要研究内容和结果如下:(1)以硫脲为硫源,采用一步热缩合法合成了一系列硫掺杂g-C3N4复合材料(记为SCN)。对该材料进行系统表征,并将其作为催化臭氧氧化碘帕醇(IPM)的有效催化剂。利用BET、XRD、FTIR、SEM和XPS等技术对SCN材料的形貌和结构进行了综合表征。结果表明,S成功地以S-C键掺杂进g-C3N4的骨架中,并具有较强的相互作用。S的修饰可以调控g-C3N4的表面化学性质。与单独臭氧氧化相比,SCN复合材料提高了IPM的降解效率,15 min内其降解效率可以达到89.4%。同时,该复合材料经过5次循环使用实验后,仍表现出了良好的催化活性。此外,通过测定溶液中臭氧的浓度发现SCN的加入提高了臭氧利用率,有利于催化臭氧氧化。SCN催化臭氧降解IPM体系中的催化降解机理可以通过自由基清除实验探究,确定反应过程中产生的活性氧物种。本研究为催化臭氧氧化提供了一种有效的无害化催化剂,在实际水处理中具有广阔的应用前景。(2)以硼酸为掺杂剂,引入B和O原子对g-C3N4进行修饰(记为BOCN)。将其作为臭氧催化剂,催化臭氧降解IPM评估其活性。BOCN的加入可显著提高催化臭氧氧化IPM的降解效率,7 min内可完全去除。同时研究了不同影响因素对降解IPM效率的影响,确定最优操作参数。通过一系列表征发现O原子以含氧官能团(C-O和C=O),B原子以B-N键的形式掺杂进g-C3N4中。深入研究催化剂结构和催化性能之间的构效关系,发现含氧官能团及B-N的含量与催化降解IPM速率呈线性正相关。通过抑制实验和ESR分析发现催化臭氧氧化过程中产生的主要活性物质是羟基自由基、超氧自由基和单线态氧(·OH、·O2-和~1O2)。另外,检测了反应过程中IPM的中间产物并提出了降解路径。通过DFT计算确定BOCN的结构和吸附臭氧的活性位点,为探究催化臭氧降解机理提供理论支持。
其他文献
基于过硫酸盐的高级氧化技术是治理复杂水环境中难降解有机污染物有效方法之一。然而,过硫酸盐的非均相催化的界面反应过程中,界面上电子转输效率和物质传质的限制步骤,导致了非均相过硫酸盐催化效率低下的难题。作者主要针对这一难题,从非均相催化中界面反应过程的限制步骤入手,聚焦氧化剂吸附、界面电子转移、活性氧中间体的解吸附这三个方面,深入研究了铜基催化剂上过硫酸盐界面催化机制,进而探究其解决方案。所取得的主要
学位
热解技术可以实现废弃印刷电路板(Waste printed circuit boards,简称WPCBs)非金属组分(Non-metallic fractions,简称NMFs)的减量化,但是含溴组分(如溴化环氧树脂)的裂解所释放的含溴污染物会引起二次污染。碱性添加剂在WPCBs热解过程中可改变溴的分布。熔盐共热解是脱除含溴污染物的有效途径之一,利用熔融盐作为反应介质和热载体,将含溴污染物中溴离子
学位
近年来,药品和个人护理用品(Pharmaceuticals and Personal Care Products,PPCPs)作为一类新兴污染物,其导致的环境污染问题受到了科研工作者的广泛关注;如何有效控制PPCPs污染已成为水污染控制领域的研究热点与难点。以PPCPs抗癫痫类药物卡马西平(Carbamazepine,CBZ)为例,CBZ在我国多个省份的河流湖泊等环境水体中均有检出。基于活化过硫酸
学位
近年来,药品和个人护理用品(Pharmaceuticals and Personal Care Products,PPCPs)由于其大量生产、广泛使用和潜在的环境危害,目前已经成为一类新兴污染物(Emerging Contaminants),其导致的环境污染和危害受到了广泛的关注。以典型抗生素盐酸四环素(Tetracycline hydrochloride,TC)为例,TC在我国多个省份的河流湖泊
学位
光催化被认为是解决当前水污染问题的有效途径。众所周知,显著的光生电荷复合和光吸收差是光催化应用的主要瓶颈。然而,传统的氧化物光催化剂由于带隙宽,对可见光的吸收能力差,限制了其实际应用。其中,碳量子点(CQDs)作为一种很有前途的新型碳纳米材料,其卓越的电子迁移效率和易调节的光吸收范围;同时,利用C/Br掺杂调节的石墨化氮化碳(g-C3N4)由于其独特的电子结构和带隙,也大大拓宽光响应范围,增强了光
学位
农林废弃生物质常常难以得到有效利用,而通过将其热解制备生物炭是一种很好的利用方式。低共熔溶剂(DES)是由一定摩尔比的氢键受体和氢键供体组成的均匀混合的溶剂,常用于金属电沉积、有机合成、分离纯化和功能材料合成等领域。本研究以DES作为改性试剂制备了低成本、环境友好的生物炭材料,并将其用于修复水体中的Cr(Ⅵ)和布洛芬(IBP)污染。主要研究工作和结论如下:(1)本研究以FeCl3/尿素基DES作为
学位
基于硫酸根自由基的高级氧化技术(SR-AOPs)是目前处理有机废水中最简单和高效的方法之一,其中通过多相过渡金属材料活化过一硫酸氢盐(PMS)成为了学者们研究的热点。Ag作为过渡金属的一种,具有优异的光敏性、导电性和催化活性,常作为催化剂应用于光催化领域,而很少应用于SR-AOPs。因此,本文以对硝基苯酚(PNP)为底物,研究了银基纳米材料活化PMS降解有机污染物的性能和机制,主要研究内容如下:(
学位
环境就是民生,青山就是美丽,蓝天也是幸福,绿水更是生命。随着“绿水青山就是金山银山”的理念深入人心,环境保护越来越引起人们的重视,环境治理也取得了一系列显著成效。但是近年在水环境里出现的新型污染物引起人类广泛关注,例如内分泌干扰物、抗生素、微塑料等。我国是抗生素生产和使用的大国,但是由于我国对于抗生素污染物排放相关标准体系尚不完善,还未建立完整的监测体系和限制标准,排放情况尚未得到有效控制,抗生素
学位
目的 分析冠心病伴心力衰竭(心衰)患者实施美托洛尔联合曲美他嗪治疗的临床价值。方法 74例冠心病合并心衰患者,采用随机数字表法分为对照组和观察组,每组37例。对照组应用美托洛尔治疗,观察组在对照组基础上联合曲美他嗪治疗。比较两组临床疗效、心功能指标、6 min步行距离(6MWD)、心率(HR)及不良反应发生情况。结果 治疗前,两组左心室射血分数(LVEF)、左心室舒张末期内径(LVEDD)与左心室
期刊
土壤的一些重金属通过人类直接接触和食用农作物会给人类提供必需的营养,但当浓度太高就会给人类健康造成威胁。农业领域农药的滥用、污染废水的回田灌溉;工业领域大量矿石的开采、皮革制造行业产生的污水不合格排放等都加重了环境的重金属污染。对环境、尤其是土壤中重金属的修复近十年来逐渐发展为重金属研究的热门领域。生物炭由于自身具备的理化特点,是用于重金属修复的热门研究材料。而将生物炭进行金属盐改性在其表面引入金
学位