论文部分内容阅读
四旋翼飞行器是一种性能卓越的新型无人飞行器,它不仅轻巧易携带,而且噪音小、隐蔽性强,目前被广泛应用于军事侦察、地图测绘、航空摄影和包裹投递等领域。然而,四旋翼系统一方面由于特殊的物理结构导致其具有欠驱动特性;另一方面其系统模型不仅具有非线性特性,且易受到内部参数不确定性和外部扰动的影响。此外,日益复杂的工作环境和性能需求,对四旋翼的控制系统设计提出了越来越高的要求。故本文针对四旋翼系统,研究其在遭受到外界扰动、惯性参数不确定、时变负载以及执行器饱和等情形下的暂稳态性能受限控制器设计问题。论文主要研究内容如下:(1)针对不确定四旋翼系统,考虑跟踪误差暂稳态受限问题。首先,基于牛顿定律,构建了四旋翼系统在时变负载和阵风扰动下的机理模型。其次,采用自适应方法和不等式缩放技巧,对控制增益和惯性参数不确定性进行处理。最后,基于递归反步设计方法,构造了自适应预定性能跟踪控制方案,使得闭环系统是一致最终有界稳定的,并确保四旋翼位置跟踪误差暂稳态过程满足预先设定的约束。(2)针对不确定四旋翼系统,研究部分状态变量暂稳态受限问题。基于障碍李雅普诺夫函数和递归反步设计方法,构造多状态变量受限控制策略,使得状态变量分别满足预先设定的常值约束和时变非对称约束。并通过数值仿真和实验验证了所提控制策略的有效性。(3)针对四旋翼系统,研究在非对称时变全状态约束和非对称时变饱和输入约束下的跟踪控制问题。首先,通过变换函数构造了非对称时变饱和输入的数学模型,并结合一阶辅助系统,将具有饱和输入的原始系统转化为等效的不饱和系统。然后,基于此等效增广系统,通过新颖的障碍李雅普诺夫函数和Nussbaum增益技术,构造全状态受限饱和控制方案,保证了闭环系统的稳定性,并使四旋翼系统全部状态变量和输入信号满足预先设定的约束。(4)鉴于单个四旋翼的局限性,针对不确定多四旋翼系统,研究其围捕误差暂稳态受限问题,并基于障碍李雅普诺夫函数和动态面技术,提出了分布式自适应围捕协作控制协议。其中通过引入一阶低通滤波器对虚拟控制器的导数进行估计,避免传统反步法中“计算爆炸”问题。另外,为了避免控制输入超过约束范围,构造了辅助系统对饱和约束进行补偿。最后,通过障碍李雅普诺夫稳定性理论证明了闭环系统的稳定性,并确保了围捕误差满足在超调量、收敛精度和收敛速度等多方面的要求。