论文部分内容阅读
本论文以金属纳米结构在光波波段的电磁增强所引起的奇异光学性质为基础,对于面向应用的纳光子器件进行了探索研究。从金属纳米结构在光波波段的局域增强特性、环境折射率敏感特性、亚波长光调控特性和光吸收增强特性入手,通过分析一维、二维和三维情况下金属纳米结构的不同光学性质,开展了表面等离子体传感芯片、表面增强拉曼传感芯片、芯片型表面等离子体光谱仪分光器件和宽波段光吸收器件的理论设计、器件制备以及功能验证等相关研究工作,为金属纳米光学从物理层面的性质研究向应用层面的器件发展提供了思路。论文的主要研究内容和结论如下:(1)结合表面等离子体传感在灵敏度和稳定性方面的应用需求,提出了基于一维金银双层纳米膜结构的传感芯片,基于Fresnell反射定律发展了针对这一结构的表面等离子体传感芯片参数设计方法,利用Maxwell电磁理论分析了其折射率敏感增强机理,在此基础上完成了芯片制备与系统搭建,并将其集成于表面等离子体成像传感分析仪中,使仪器的传感灵敏度达到6.64×10-7RIU。(2)利用亚波长金属狭缝-沟槽结构中的表面干涉特性,提出了一种可直接贴于CCD等光电阵列探测器上的薄膜型表面等离子体光谱仪分光器,结合表面等离子体共振理论和传统的傅立叶变换光谱理论,建立了针对这一光谱仪分光器件的光谱恢复方法,通过仿真实现了其光谱探测功能验证,结果表明所恢复的光谱频点准确、形状吻合。(3)针对二维金属纳米狭缝在表面增强拉曼传感中的高灵敏特性和可重复的阵列型纳米狭缝在结构制备方面面临的技术障碍,提出了两种可便捷、快速、低成本制备金属纳米狭缝阵列结构的工艺方法,一是基于刻蚀自组装PS球制备金属球壳纳米狭缝阵列,实验结果表明其获得的金属球壳狭缝的平均宽度仅15nm;另一种是基于压印诱导龟裂的纳米狭缝制备方法,通过有限元力学仿真对这一工艺的物理机理和参数影响进行了深入研究,实验结果表明其所制备的纳米狭缝半宽仅30nm,且深宽比超过了3:1;(4)结合理论与仿真手段,研究了三维金属纳米结构独特的z向耦合共振模式,分析了其z向耦合共振激发的光场局域增强和光吸收增强的特点,在此基础上提出了基于三维金属/介质/金属孔阵列结构的表面增强拉曼传感芯片和金属/介质/金属纳米球阵列结构的宽波段、高效率光吸收器件,对于拉曼增强芯片,实验结果表明其增强因子比其相同参数的二维结构高3.85倍,对于光吸收器件,优化参数下其在350nm-670nm的光谱范围内获得了93.9%的光吸收效率。(5)在三维金属复合纳米结构方面进行了探索研究,提出了一种基于金属锥尖-粒子复合结构二次局域增强的表面增强拉曼传感芯片,通过对其初级局域和二次局域的理论分析与参数优化,获得了大于109的拉曼增强因子。