【摘 要】
:
对于一个图G,用A(G)表示图G的邻接矩阵,矩阵A(G)的特征值称为图G的特征值,图G的特征值组成的序列称为图G的谱.图的谱是图的一种重要性征,在物理和化学领域中,通过对物质分子所对应的分子图的谱的研究,可以预知该物质在某些物理和化学方面的性质.而在计算机网络中,研究网络对应的图的谱将为深入研究该网络提供一个非常有用的代数工具.但是对于大量的图来说,还不能直接求出它们的谱,因此对图的特征值的估计是
论文部分内容阅读
对于一个图G,用A(G)表示图G的邻接矩阵,矩阵A(G)的特征值称为图G的特征值,图G的特征值组成的序列称为图G的谱.图的谱是图的一种重要性征,在物理和化学领域中,通过对物质分子所对应的分子图的谱的研究,可以预知该物质在某些物理和化学方面的性质.而在计算机网络中,研究网络对应的图的谱将为深入研究该网络提供一个非常有用的代数工具.但是对于大量的图来说,还不能直接求出它们的谱,因此对图的特征值的估计是图论中一个相当活跃的课题,近30年来,已有大量的文献和结果.本文主要研究了阿贝尔Cayley图,阿贝尔双Cayley图,阿贝尔混合Cayley图的谱,以及双循环有向图的一些代数性质,又刻划了一类高斯整谱循环有向图.另外,我们还研究了有向图的谱以及拟树图中Laplacian宽度最大的图等问题.第一章,我们介绍了研究背景和一些基本概念,给出了Cayley图、双Cayley图、混合Cayley图、谱、高斯整谱图、拉普拉斯宽度等的定义.对各类研究问题的历史与现状进行了一定程度的综述.最后介绍了本文的研究内容和主要结果.第二章,我们首先研究了折叠立方体和双折叠立方体的谱;其次研究了阿贝尔Cayley图的邻接矩阵以及它的谱,由此我们给出了阿贝尔双Cayley图和混合Cayley图的谱,根据双Cayley图的定义我们又给出了有向双Cayley图的定义,进一步研究了阿贝尔群上双Cayley有向图和混合Cayley有向图的谱;最后,我们研究了有向双循环图的谱以及有向双循环图中有向支撑树个数的渐进计数定理.第三章,主要研究了二部有向图的二部补图的谱,并且定义了有向图的二部积和完全积,从而进一步研究了有向图二部积和完全积的谱.第四章,我们主要研究了拟树图的Laplacian宽度,确定了一类拟树图中Laplacian宽度最大的图是唯一的.第五章,我们主要研究了高斯整谱循环有向图,完全刻划了点数为k,2k,4k的高斯整谱循环有向图,同时给出了一类点数为2tk的高斯整谱循环有向图,其中t>2且k是奇数.
其他文献
函数空间的研究有很长的历史,它们的研究在经典数学和现代数学中起到重要作用.并且,在偏微分方程的研究中提出的一些算子与方法,成为解决方程的有力工具,例如奇异积分算子,拟微分算子,偏微分计算等.本文中,首先推广Triebel-Lizorkin空间与Besov空间到加权的Morrey型Triebel-Lizorkin空间与Besov空间.接着,讨论几类典型的拟微分算子在加权的Morrey型Triebel
复杂动力网络系统的同步控制是当今研究复杂网络动力学的重大课题之一,近年来受到了国内外许多学者的广泛关注.本文主要研究几类复杂动力网络在不同控制策略下的同步,包括神经网络的周期间歇控制,无向网络的同步控制,有向网络的自适应间歇控制和社团网络的聚类同步与完全同步控制.第一部分讨论了两类神经网络模型在周期间歇控制下的同步.首先研究了一类具有混合时滞的神经网络的全局指数滞后同步性.通过引入周期间歇控制策略
本论文分为四个部分,主要研究了非交换Orlicz空间的一些结论.第一部分介绍了研究背景及预备知识.第二部分包括四节内容.在第一节中,我们给出了增长函数的关系定理和一些性质.在第二节中,我们得到了关于非交换Orlicz空间的基本内容.在第三节中,我们证明了非交换Orlicz-Hardy空间的Szego和Riesz型分解定理.在第四节中讨论了外算子分解定理.第三部分我们首先证明了条件期望ε的收缩性,其
经典的Morrey空间是Morrey为研究二阶椭圆偏微分方程解的局部行为的时候引入的.我们知道,偏微分方程解的许多性质可以归结为一些算子在Morrey空间中有界.Vitanza发现Morrey空间的一类适当的子空间,所谓的消失Morrey空间,可以应用于获得某些二阶偏微分方程的正则性.Komori和Shirai定义了加权的Morrey空间并研究调和分析一些经典算子在这个空间上的有界性,如Hardy
伴随着社会生产力和科学技术的飞速发展,图论的实际应用已经渗透到各个领域,而图论中的参数可以作为这些领域研究的一个衡量指标.本文主要研究了三个图论中的参数:哈密尔顿性、生成连通指数以及等周弧连通度.第一章介绍了研究背景和一些基本概念、符号及术语,并对上述这三个参数的研究现状进行了一定程度的回顾,最后介绍了本文的主要研究结果.第二章研究了3-连通无爪图具有哈密尔顿性的充分条件.设s1,s2,s3为大于
设M是以某种具体规定的方式所定义的与图相联系的图矩阵.利用矩阵M的特征值来研究图的理论称作是图的谱理论(或M-谱理论).图矩阵包括关联矩阵、邻接矩阵A、Laplacian矩阵L、规范Laplacian矩阵和Seidel矩阵等.在以往的研究中,主要涉及图的A-谱理论和L-谱理论.近来,著名的图谱理论学者Cvetkovic,Rowlinson和Simic[42]提出并分析了用signless Lapl
复杂系统是21世纪复杂性科学和系统科学的重点研究对象之一,自然界与人类社会中的诸多现象都可以通过复杂系统来描述和刻画.复杂网络作为复杂系统的主要表现形式之一,因其能够帮助人们更好的理解和研究复杂系统,近年来吸引了国内外众多学者的关注.论文以复杂系统理论为主线,综合了微分方程理论、神经网络和现代控制理论中的相关技术和方法,研究了几类复杂网络系统的动态行为与控制.本论文首先研究了复杂网络在不同控制策略
本文由三部分内容组成:一.平面2-圈共振图的构造与识别;二.2m-临界图;三.一类Cayley图的Vosperian性质。下面一一介绍。 一.平面2-圈共振图的构造与识别 化学图论研究化学分子图的拓扑不变量和拓扑性质,以及它们与化合物物理化学性质之间的相关性,因而在预测、合成新的化合物及药物方面有重要的应用。 在苯类碳氢化合物(属芳族烃)的拓扑理论中,如果将碳原子视为点(vert
随着信息网络的飞速发展,许多与之相关的理论性问题越来越引起人们的重视,其中之一即为网络可靠性,对称性在网络设计中也非常重要,因为对称网络具有许多我们所期望的性质。网络往往被模型化为图。衡量网络可靠性的经典参数为图的连通度和边连通度。为了进一步的研究,人们提出了各种各样的高阶连通性概念,如super-κ性,hyper-κ性,超边连通性,r-限制性边连通度等。本论文主要利用图的高阶连通性研究网络(特别