MoS2与SiC复合微弧氧化层的制备及其摩擦学性能研究

来源 :大连海事大学 | 被引量 : 0次 | 上传用户:lusx
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
铝合金由于其密度小、比强度高等优点,在工业领域得到了广泛的应用。然而其表面硬度低,易磨损等缺陷限制了铝合金材料的进一步发展,因而对铝合金进行表面强化处理就有着重要的意义。采用微弧氧化技术可以在铝合金表面原位生长陶瓷层,该膜层与基体结合性能好,硬度高。本文以ZL109铝合金为例,针对铝合金的摩擦学性能的不足,展开了耐磨减摩微弧氧化层的研究。本文选择了 MoS2和SiC两种微纳米颗粒作为复合微弧氧化层的电解液添加剂,MoS2作为减摩添加剂,SiC作为耐磨添加剂。将两种纳米颗粒在电解液中良好分散后,烧结在微弧氧化层中,成功制备了MoS2与SiC复合微弧氧化层。用扫描电子显微镜(SEM)、X射线能谱仪(EDS)、显微硬度仪和摩擦磨损试验机分别评价了复合微弧氧化层的结构、成分以及摩擦学性能。为了进一步改善MoS2与SiC复合微弧氧化层的结构与摩擦学性能,对MoS2和SiC的浓度和配比以及实验所用电参数进行了优化试验。结果表明.:相比于未添加纳米颗粒的微弧氧化层,MoS2与SiC复合微弧氧化层生长速度减缓、膜层厚度变小了 16.2%,表面形貌更加致密且粗糙度减小了40.22%,硬度增加了 1 1.06%;在摩擦磨损试验中,复合膜层磨损量降低了 32.65%,摩擦系数更低且平稳;纳米颗粒的浓度为6g/L时,复合微弧氧化层中两种纳米颗粒的含量最多,在摩擦磨损试验中的摩擦系数和磨损量最低;在纳米颗粒的总浓度为6g/L时,MoS2和SiC的复配比例为1:2的情况下,复合微弧氧化层的摩擦系数较低、磨损量最低,复合微弧氧化层的减摩效果明显、耐磨效果最优;针对膜层厚度、粗糙度和硬度三个指标,所得电参数优化结果为正向电压450V,负向电压100V,正向占空比30%,负向占空比10%,频率800Hz;电参数优化后膜层厚度有大幅提升,膜层粗糙度与硬度也略有改善。
其他文献
本文主要针对开口曲线上的Riemann-Hilbert问题的解在端点处的奇异性问题,即对一组含有节点的一特殊曲线,详细分析了用于表示问题解的Cauchy型积分的性质,尤其是针对具体积分表达式和几类不同性质的积分核在节点处的奇异性分析。对于一类交叠产生尖点的相切封闭圆周,利用合理剖开封闭曲线讨论了从平面上不同位置趋向切点时Cauchy积分的奇异性分布。特别地,证明了在某些特殊情况下节点处的奇异性可以
底水油藏水平井在开采过程中,由于井眼轨迹、井筒摩阻、地层非均质性的综合影响,会导致井筒产液剖面不均衡,容易使底水快速脊进,产生单点或多点水淹,从而使含水率短期内急剧
二维层状材料的少层/薄层片状结构赋予其大的比表面积、大量的表面暴露活性位点,这使得其在电化学催化、气/湿敏传感等领域的应用备受关注。本论文以过渡金属化合物二硫化钼(M
BiVO4作为一种窄禁带宽度的光催化材料,具有无毒、稳定性好、可见光吸收能力等优点。但是BiVO4的光生电子和空穴对极易复合,使得它的应用受到限制。本文以BiVO4为研究对象,通
有机磷类神经性毒剂(有机磷毒剂)是一种对环境和人类的生命安全具有极大威胁的化学物质,有机磷毒剂的解毒剂直接施用目前还具有很多弊端,比如施用繁琐,需要多次少量施用,没有特异靶向性等。研究和开发合适的有机磷毒剂解毒剂的载体,制备合适的载药体系,对有机磷毒剂进行洗消治疗一体化具有十分重要的意义。本论文在介孔型分子筛MCM-41和一种生物基金属有机框架化合物bio-MOF-1中,负载神经性有机磷毒剂解毒剂
浅埋煤层矿压显现显著,综采工作面普遍选用高阻力液压支架。而针对于受井田面积与资源储量限制的陕北浅埋煤层中小煤矿,如何在降低工作面长度与选用中等阻力液压支架情况下实
氧反应(OER/ORR)催化在金属-空气电池等新能源器件中有着举足轻重的作用。近期,双功能氧催化剂逐渐受到研究者们关注。Pt、RuO2和IrO2等贵金属基催化剂被认为是催化氧反应的最
陶瓷/金属界面直接影响复合材料的力学和物理性能,陶瓷/金属界面的结合强度不仅决定金属与陶瓷之间载荷的有效传递,而且是建立复合材料界面结构-界面结合性能-宏观力学性能之间关系的桥梁,也是复合材料跨尺度模拟必不可少的初始参量,更是发挥复合材料功能特性的关键。但是,目前陶瓷/金属界面结合强度的实验研究仍存在着局限和不足,而且时间周期长,成本过高。本文采用第一性原理计算方法,以原位合成的TiB/Ti、Ti
炔酰胺类化合物是一种重要的有机合成模块,在过渡金属催化或无金属催化条件下能够有效构建各种含氮有机骨架,如烯酰胺、咪唑、噁唑啉酮、吡咯、茚并吡咯、氨基酸、哌嗪等,而
卤键(XB)是一种类似于氢键的非共价相互作用,在晶体工程、医药领域、生物系统、材料科学中有重要的应用价值,从而引起了科学家们的广泛关注。尽管关于卤键的研究取得了巨大进