论文部分内容阅读
冠状病毒传播速速快、感染后果严重,对人类生命健康构成持续的威胁。到目前为止,总共出现三次冠状病毒的暴发流行,其一是2003年由严重急性呼吸综合征冠状病毒(SARS-CoV)引起的非典型肺炎,其二是2012年由中东呼吸综合征冠状病毒(MERS-CoV)引起的中东呼吸综合征,其三是2019年由新型冠状病毒(SARS-CoV-2)引起的新冠肺炎(COVID-19)。遗憾的是目前仅针对SARS-CoV-2有上市疫苗,对SARS-CoV和MERS-CoV既无可用疫苗也无特效药。中和抗体的应用是预防和控制传染病非常有效的手段之一。冠状病毒刺突蛋白上的受体结合域(RBD)能够强烈地诱导机体产生保护性抗体,是抗体甚至疫苗研发的重要靶点。目前,针对SARS-CoV和MERS-CoV的单克隆抗体研究较多,包括人源抗体、鼠源抗体和人源化抗体等。纳米抗体作为目前已知的可结合抗原的最小抗体,保留了较高的抗原亲和力和特异性,具有分子量低、易于制备、免疫原性低、组织渗透力强等优点,可以用于多种疾病的治疗,具有广泛的应用前景。对MERS-CoV纳米抗体的研究极少,对SARS-CoV纳米抗体的研究尚属空白。因此,本研究以SARS-CoV和MERS-CoV的受体结合域为靶点,展开了对SARS-CoV和MERS-CoV特异性纳米中和抗体的研究。1、抗MERS-CoV纳米中和抗体研究。为了筛选MERS-CoV纳米中和抗体,使用MERS-CoV S1和S蛋白分别对MERS-CoV RBD特异性纳米抗体库进行了四轮筛选,通过酶联免疫吸附试验(ELISA)鉴定出三株亲和力较高的抗体。然后,通过竞争性ELISA、生物膜层干涉实验等鉴定出识别位点与Nb MS10(Nb MS10为此前筛选到的一株抗MERS-CoV纳米抗体)不同的一株抗体M34,并利用原核表达系统和真核表达系统制备了抗体蛋白。利用生物膜层干涉技术测定了M34与MERS-CoV S1蛋白的结合亲和力(Kd=222 p M),通过假病毒中和试验验证了该抗体的中和活性(IC50=15.2 ng/m L)。通过竞争性ELISA证实M34与DPP4受体竞争性结合MERS-CoV RBD。进一步又通过流式细胞术试验和细胞-细胞融合实验探究出该抗体通过阻断RBD与DPP4的结合而发挥作用。最后通过同源建模和分子对接预测了M34与MERS-CoV RBD结合的空间结构,结果提示M34可能通过其残基G54与RBD上的残基Y523形成氢键而相互作用。2、抗MERS-CoV双表位中和抗体研究。为了减小单一抗体的应用导致病毒逃逸突变发生的可能性,将上一部分筛选到的抗体与此前实验室鉴定的抗MERS-CoV特异性抗体Nb MS10通过一个短肽进行连接,构建了抗MERS-CoV双表位抗体,通过真核表达系统表达了该抗体。然后通过ELISA测定了该抗体与MERS-CoV S1的亲和力,利用生物膜层干涉技术测定了该抗体与MERS-CoV S1蛋白的结合亲和力(Kd=36 p M),通过假病毒中和试验鉴定了该抗体的中和活性(IC50=11.1 ng/m L)。结果证实改造后的双表位抗体,其亲和力、中和活性等生物学功能没有降低,并且对D539A/N突变的假病毒也具有了中和能力。3、抗SARS-CoV纳米中和抗体研究。为了筛选SARS-CoV纳米中和抗体,以SARS-CoV RBD免疫羊驼,免疫后利用其外周血单个核细胞建立了噬菌体展示的纳米抗体库。分别以SARS-CoV RBD和S1为抗原对抗体库进行了四轮筛选,通过ELISA鉴定出了四株高结合力抗体,选择了其中结合力最高的S14进行了进一步研究。利用生物膜层干涉技术测定了S14与SARS-CoV S1蛋白的亲和力(Kd=143 p M),通过假病毒中和试验验证了该抗体的中和活性(IC50=10.7 ng/m L)。通过竞争性ELISA证实S14与ACE2受体竞争性结合SARS-CoV RBD。进一步又通过流式细胞术试验探究出该抗体通过阻断RBD与ACE2的结合而发挥作用。最后通过同源建模和分子对接预测了S14与SARS-CoV RBD结合的空间结构,结果提示S14可能通过其残基S33和P99与RBD上的残基R449形成氢键而相互作用。4、抗MERS-CoV和SARS-CoV双特异性中和抗体研究。为了实现抗体功能的多样性,将上一部分筛选到的抗SARS-CoV抗体S14与抗MERS-CoV特异性抗体Nb MS10通过一个短肽进行连接,构建了抗MERS-CoV和抗SARS-CoV的双特异性抗体,通过真核表达系统表达了该抗体。然后通过ELISA测定了该抗体与MERS-CoV S1和SARS-CoV S1蛋白的结合力,利用生物膜层干涉技术测定了该抗体与MERS-CoV S1和SARS-CoV S1蛋白的亲和力(Kd分别为116和155 p M),通过假病毒中和试验验证了该抗体的中和活性(IC50分别为7.00和13.7 ng/m L)。结果证实改造后的双表位抗体,其亲和力、中和活性等生物学功能没有降低,具有同时抗MERS-CoV假病毒和SARS-CoV假病毒的能力。本研究以MERS-CoV和SARS-CoV的RBD为靶点,借助噬菌体展示技术,通过四轮筛选,针对两种病毒分别筛选到一株高亲和力的纳米抗体。随后通过ELISA、生物膜层干涉技术、假病毒中和试验评价了他们的生物学功能,通过竞争性ELISA、流式细胞术实验、细胞-细胞融合实验探究了它们的中和机制。然后通过基因工程的方法,将识别不同表位的抗MERS-CoV纳米抗体连接,将抗MERS-CoV纳米抗体和抗SARS-CoV纳米抗体进行连接,分别构建了抗MERS-CoV双表位抗体以及抗MERS-CoV和抗SARS-CoV双特异性抗体,并同样通过ELISA、生物膜层干涉技术、假病毒中和试验评价了他们的生物学功能,结果显示,经改造后的抗体分别保留着连接前各部分抗体的生物学功能,证实改造是可行的,为发展抗MERS-CoV和抗SARS-CoV治疗药物奠定了基础,为发展多功能抗体提供了一种策略。