论文部分内容阅读
稀土杂化高分子材料因稀土离子独特的电子结构而使其成为一类具有独特性能的发光材料,在光致发光、电致发光以及聚合物光纤等领域有潜在的应用价值。稀土杂化高分子材料由于兼具稀土离子发光强度高、色纯度高和高分子材料优良的加工成型性能等优点而备受瞩目。本课题制备了五种键合型稀土铕配合物。考察配体的结构变化以及第二配体的协同效应对稀土配合物荧光强度的影响。将键合型稀土配合物与甲基丙烯酸甲酯和甲基丙烯酸进行三元共聚,得到一系列稀土杂化高分子材料。研究共聚物中稀土配合物的种类以及含量的变化对共聚物性能的影响。通过回归分析法对实验范围内共聚物的发光强度,吸光度以及透光率与配合物单体含量之间的关系进行函数关系式拟合。本课题主要工作可以归纳为以下几个方面:1.用溶液沉淀法制备稀土配合物铕-丙烯酸(Eu(AA)3),铕-甲基丙烯酸(Eu(MA)3),铕-邻菲罗啉(EuCl3.Phen),铕-丙烯酸-邻菲罗啉(Eu(AA)3.Phen),铕-甲基丙烯酸-邻菲罗啉(Eu(MA)3.Phen),铕-乙酰丙酮(Eu(acac)3),铕-乙酰丙酮-丙烯酸(Eu(acac)2.AA)和铕-乙酰丙酮-邻菲罗啉(Eu(acac)3.Phen)。比较了各配合物的荧光强度。荧光光谱研究表明:氯化铕(EuCl3.nH2O), Eu(AA)3, Eu(MA)3, EuCl3.Phen, Eu(AA)3.Phen和Eu(MA)3.Phen的最佳荧光激发波长为396nm。Eu(acac)3, Eu(acac)2.AA和Eu(acac)3.Phen的最佳荧光激发波长为536nm。稀土二元配合物特征发射波长的荧光强度有下列关系:Eu(acac)3>EuCl3.Phen>Eu(AA)3>Eu(MA)3>EuCl3.nH2O。稀土二元配合物的荧光强度都高于EuCl3.nH2O的荧光强度且发射光谱波长位置基本一致。在最佳激发波长下,稀土三元配合物的荧光特征发射光谱强度有下列关系:Eu(AA)3Phen>Eu(AA)3, Eu(MA)3Phen>Eu(MA)3, Eu(acac)3Phen>Eu(acac)3。说明三元配合物中配体1,10-Phen的引入可以明显的提高稀土配合物的荧光强度。2.将前一部分合成的五种键合型稀土配合物与甲基丙烯酸甲酯和甲基丙烯酸进行共聚得到一系列的共聚物。研究了稀土配合物的种类和含量的变化对共聚物性能的影响。研究表明:共聚物发射Eu3+的特征荧光。在相同稀土含量下,二元配合物与反应单体MMA和HMA生成共聚物的荧光强度低于相应的三元配合物与反应单体生成的共聚物。但三元配合物在反应单体中的溶解度低于二元配合物,从而使在最大溶解度下二元配合物与反应单体生成共聚物的荧光强度高于相应的三元配合物与反应单体生成的共聚物。合成的稀土配合物以及共聚物发射的荧光表现为红光,且单色性很好。与配合物相比,生成共聚物的荧光强度比较弱,这主要是由于共聚物中稀土配合物的含量较低。当共聚物中稀土配合物浓度相同时,二元稀土配合对应共聚物的透光率好于相应的三元配合物,吸光度弱于相应的三元配合物。共聚物中随着稀土配合物Eu(AA)3含量的增加,共聚物的荧光强度和吸光度增加;透光率降低。共聚物的吸光度在394nm处存在一个吸收峰,透光率在394nm处存在一个吸收谷。共聚物中Eu(AA)3含量较低时,其吸水率比MMA-co-HMA略低。随着共聚物中Eu(AA)3含量的增加,共聚物的吸水率呈现增加的趋势。稀土配合物的加入在一定程度上增加了共聚物的吸水率,但所制备共聚物样品的吸水率比较低,即吸湿性不大,可以作为光学塑料使用。3.用回归分析法对共聚物的荧光强度,吸光度以及透光率与配合物单体含量之间的关系用函数关系式进行拟合,发现共聚物Eu(AA)3-co-MMA-HMA中,随着Eu(AA)3含量的增加,共聚物的荧光强度和吸光度呈线性增加;共聚物的透光率呈指数减小。