【摘 要】
:
表面等离激元传感技术已被广泛应用于现代科学的各个领域,相对比于传统的光学传感技术,表面等离激元传感器具备无损害、高灵敏、连续检测等特性,是传感领域的研究热点。其中,表面增强拉曼散射(SERS)和表面等离激元共振(SPR)传感器是表面等离激元传感器的重要组成部分。SERS是一项强大的指纹光谱分析技术,利用局域表面等离激元共振所产生的电磁场增强,能够实现较低浓度物质的直接检测。SPR传感器利用金属膜表
论文部分内容阅读
表面等离激元传感技术已被广泛应用于现代科学的各个领域,相对比于传统的光学传感技术,表面等离激元传感器具备无损害、高灵敏、连续检测等特性,是传感领域的研究热点。其中,表面增强拉曼散射(SERS)和表面等离激元共振(SPR)传感器是表面等离激元传感器的重要组成部分。SERS是一项强大的指纹光谱分析技术,利用局域表面等离激元共振所产生的电磁场增强,能够实现较低浓度物质的直接检测。SPR传感器利用金属膜表面倏逝波的波矢量与表面等离激元的波矢量耦合产生共振吸收峰,共振吸收峰的位置会随着外界折射率的变化而发生移动,从而实现对目标分子的间接检测。二维(2D)过渡金属硫化物(TMDCs)具有独特的光学和电学性能,在光学电子器件和纳米传感等诸多领域具有广阔的应用潜力。其中二硫化钼(MoS2)作为典型的过渡金属硫化物,具有带隙可调性(1.29 e V~1.9 e V)、高透光性、无悬空键等优异特性,成为了近年来低维功能材料领域研究的热点之一。本文基于SERS的直接分辨能力和SPR的间接分辨能力,结合MoS2优异特性,从理论和实验两个方面研究了MoS2间隔双金属复合结构的SERS-SPR传感器。本文主要研究工作有:(1)理论上,选择Au、MoS2和Ag作为激发材料,提出了基于Au/MoS2/Ag D-POF的传感结构。用COMSOL Multiphysics软件进行结构优化设计,利用菲涅耳公式模拟光在传感区域的传播,采用波长调制法模拟计算传感器灵敏度,通过SPR传感器灵敏度的对比,选择最佳的金属层厚度及MoS2层数作为研究对象。(2)实验上,选用手工抛制塑料光纤的D型区域(D-POF)作为基底。基于理论模拟的最佳参数,实验制作Au/MoS2/Ag D-POF双模式传感器。该传感器具有优异的SERS性能,成功检测了罗丹明6 G分子(R6G),检测极限为10-9 M,相比于单纯的双金属传感器具有更低的检测极限和更高的稳定性。由于MoS2阻止了双金属层的直接接触,保留了金稳定性好、银分辨率高的优势,可有效解决目前双模式传感灵敏度不高、分辨率低、稳定性不好以及再现性差的问题。与其他类型SPR光纤传感器相比,该传感器表现出了优异的传感性能,在一定范围内的酒精溶液中灵敏度为2473.37 nm/RIU。其实验结果与COMSOL Multiphysics软件模拟的结果一致。为了验证所提出Au/MoS2/Ag D-POF双模式传感器的实用性,进一步将传感器用于检测溶液中的葡萄糖分子。传感器不仅实现了葡萄糖分子的SERS光谱定性检测,也实现了葡萄糖分子的SPR光谱定量分析,实验证实所制备的传感器具有很高的灵敏度和稳定性。
其他文献
研究目的足球作为一项高强度间歇性爆发的运动,在比赛中具有激烈的身体对抗,损伤发生率非常高,尤其是青少年受伤后对日后的训练、比赛以及学习生活的影响比较大。FIFA11+作为国际足联推行的一种以预防运动损伤为目的的综合热身训练,主要通过对机体下肢肌力、核心稳定性、速度灵敏的训练实现预防运动损伤的效果。本研究观察并分析8周FIFA11+综合热身训练对我国14-15岁青少年男子足球运动员核心稳定性以及灵敏
拉曼散射技术通过对分子键振动以及转动信息的识别,从而达到无损的分子检测,因此受到科研人员的持续关注。但拉曼散射信号十分微弱,严重限制了拉曼散射技术的实际应用。由拉曼散射进一步发展的表面增强拉曼散射(SERS)能够显著增强拉曼散射信号,提高对分子检测的能力。基于SERS技术强大的检测分析功能,制备使用便捷、高性能(极高的灵敏度、良好的均匀性、可重复性)的SERS基底成为科研工作者追求的目标。近年来,
Haber-Bosch工艺的出现提高了农作物的产量,养活了世界近一半的人口。然而,这一过程消耗了世界1.4%的总能源产出,每年产生3亿吨温室气体。因此,在能源化工领域实现源头及终端的节能减排是缓解日益严重的能源危机、达到“碳中和”目标的关键途径之一。而结合电驱动工艺的放电等离子体技术可接近零碳排放的最终目标。同时,随着脉冲功率技术在国防及民用领域的迅猛发展,具有高能量、高平均功率、高重复率等特性的
具有独特性质的二维(2D)层状材料在光电探测方面展现出较大地优势。但是,基于二维材料的光电探测器通常有较大的暗电流,使得器件的开关比较低,限制了光电探测器的应用。肖特基结、p-n结或势垒层可以用来抑制暗电流,但这些方法也面临着许多困难。如二维材料的掺杂比较困难导致p-n结难以制备,势垒层的厚度如果控制不当会对光电流产生影响。传统的肖特基结是二维材料和三维金属接触形成的,但是费米钉扎效应的存在,使得
非营利组织已成为活跃在世界舞台中的一支重要力量。随着经济全球化的深入、社会公共事物的日益复杂,所以学术、教育、医疗等行业陆续出现一些非营利组织,一定程度弥补政府管理上出现的欠缺,也提高了治理的效率,成为和千千万万人生活休戚相关的重要角色。而印尼经济体制和社会体制的改革也为印尼的非营利组织提供了广阔的发展平台。本文以印尼政府与非营利组织的互动关系进行研究,通过JEMBER市政府与非营利组织的互动关系
氨是生产多种化学品的重要原料,低温等离子体合成氨技术,可以潜在地避免常规热催化氨合成的局限性,已成为将固氮与化石燃料脱钩的替代方法,其研究具有重要理论意义与应用价值。众多研究中,填充床介质阻挡放电(Dielectric Barrier Discharge,DBD)反应器,被认为是一种强化反应器内电场强度、更易产生均匀放电的等离子体反应器,其内部等离子体催化机制仅依靠实验诊断技术难以解析,需要详细的
表面增强拉曼散射(SERS)技术的发展主要依靠高效SERS基底的设计,借助纳米间隙结构的等离激元耦合可激发产生高强度的局域电磁场(热点),进而有效提高SERS活性。设计制备精细可控的金属间隙进而实现对热点的调节,是获得强度高、均匀性好的SERS基底的关键。低维SERS基底中的热点数量相对较低,不能有效利用空间优势,并且稳定性差。三维SERS基底具有更大的比表面积、更高的热点密度,为基底设计制备提供
计算材料学为人们提供了新的研究物质材料特性的方法,这使得材料学研究从单一的实验测量发展为计算机模拟与实验研究并行的形式。这一切的发展得益于密度泛函理论等第一性原理的发展以及计算机性能的提升。材料与人类的生产生活密不可分,如何选择合适的材料生产器件以及如何提升材料的性能始终是人类面对的重要课题。二维材料由于石墨烯的合成成为了当前的研究热点。由于超高的比表面积,优异的导电性和高载流子迁移率,出色的力学
随着2004年石墨烯的发现,二维(2D)材料因其独特的结构和优异的物理化学性能而得到广泛的研究和应用。在过去的几十年中,出现了大量其他的二维材料,如过渡金属硫族化合物(TMDs)、六方氮化硼(h-BN)、硅烯、Ⅲ族单硫族化合物、Mxenes等。由于较大的比表面积、良好的光学性质和较高的载流子迁移率它们被广泛应用于光电器件、储能、光催化、传感等领域。2017年通过化学气相沉积(CVD)法合成的MoS
细胞周期蛋白依赖性激酶(CDKs)属于丝氨酸-苏氨酸蛋白激酶家族,在调节细胞周期进程中发挥着不可替代的作用。研究表明,即使是CDKs的轻微失调也可能直接导致癌症的发生。因此,作为癌症治疗靶点的CDKs引起了人们广泛的关注。自2019年12月至今,由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的新型冠状病毒肺炎(COVID-19)在全球持续蔓延,对人类的生命健康和社会的经济发展造成了巨大