AtOxR-CSN5B相互作用正调控AsA含量缓解氧化胁迫机制

来源 :东北林业大学 | 被引量 : 1次 | 上传用户:jianxieshui
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在植物细胞中,活性氧(ROS)和抗坏血酸(AsA)的含量保持在一个相对稳定的平衡状态对植物防御环境胁迫起到了至关重要的作用;因此,整个代谢过程中氧化物和还原物在时间和空间上必须受到严格的控制。ASA在植物体内具有多种的生理功能,作为还原剂在非生物逆境胁迫下清除植物体内产生的H202,提高植物的耐受性起到重要的作用。目前,植物体内已经被发现存在有多条ASA的生物合成途径,L-半乳糖途径是植物中AsA最主要的生物合成途径,而VTC1则是这个途经中的一个关键的AsA合成酶,它在拟南芥中被定点突变后导致ASA的含量下降了 70%左右。最近的研究报道了VTC1与CSN5B能够相互作用影响ASA的含量变化,在黑暗条件下CSN5B能通过26S蛋白酶体途径降解VTC1负向调控AsA的含量;但是在光照和多种非生物胁迫条件下CSN5B是如何调控ASA含量变化的机制却仍不明确。在本研究中,我们从模式植物拟南芥中分离了一个未知功能的基因,命名为AtOxR。表达特性的研究显示AtOxR的表达与多种非生物胁迫存在应答,并受到了光循环的强烈诱导,过表达AtOxR基因的酵母和拟南芥转基因植株,以及AtOxR-RNAi拟南芥的突变体植株的表型分析结果显示,AtOxR基因能够正向调控酵母和拟南芥对多种非生物胁迫和氧化胁迫的耐受性。我们利用酵母双杂交技术在拟南芥的cDNA文库中筛选并鉴定了与AtOxR存在相互作用的蛋白。这个蛋白是光形态建成因子COP9复合体的亚基5B(CSN5B),应用酵母共转化、体外pull-down分析和双分子荧光互补分析验证了 AtOxR与CSN5B之间的相互作用。这暗示了 AtOxR与VTC1对ASA的合成相关。AsA表达水平和H202含量测定的结果显示,在氯化钠、甘露醇、氯化铜和过氧化氢的胁迫下,过表达AtOxR基因的转基因拟南芥植株相对于野生型拟南芥植株中拥有更高的AsA含量和更低的H202含量。这些数据表明,AtOxR-CSN5B相互作用能够正调控AsA的生物合成并提高拟南芥对于多种非生物胁迫和氧化胁迫的耐受性。因此,我们认为在多种非生物胁迫条件下(或光条件下),AtOxR-CSN5B相互作用能够抑制26S蛋白酶体途径去降解VTC1并保持植株内较高的AsA含量,这有利于通过H202清除提高过表达AtOxR基因的转基因拟南芥植株对多种非生物胁迫和氧化胁迫的耐受性。
其他文献
致病性微生物引起的食品安全问题日益严重,严重影响人们的身体健康和生活质量。开发高效、安全、稳定的乳酸菌细菌素作为天然防腐剂代替化学防腐剂,是目前亟待解决的科学问题。乳酸菌是国际公认的安全菌株(GRAS),乳酸菌在代谢过程中通过核糖体合成机制产生的一类具有抗菌活性的多肽、蛋白质或蛋白质复合物,可以有效抑制革兰氏阳性菌和部分致病菌的生长繁殖。本课题组从内蒙、黑龙江、河北等地的发酵乳制品中分离出的60多
由Sporocadus populinus(Bres.)Orsenigo,Rodondi&B.Sutton=Coryneum populinum Bres.)引起的杨树灰斑病是杨树苗圃常见严重病害之一,对于该病防治目前为止还未见到相关生物防治的报道。植物体内存在着一些微生物的自然群体,它们中的某些种类,例如链霉菌等对植物病原菌有拮抗作用,因此可用来作为生防菌来开发利用。评估拮抗菌的防病潜力是开发利
白腐真菌(White rot fungi)通过分泌包含漆酶(Lacase)、锰过氧化物酶(MnP)、木质素过氧化物酶(LiP)等几种主要的木质素降解酶可以有效降解木质素及多种芳香族化合物,在环境污染问题日益严重的当今社会,利用白腐菌及其木质素降解酶进行环境污染治理的应用越来越多。凭借MnP广泛的底物多样性及其在木质素降解酶系统中占有的重要地位,对MnP的研究与应用受到了国内外研究学者的广泛关注。由
杨干象(Cryptorhynchus lapathi L.)是北美、欧洲许多国家以及亚洲的中国、韩国和日本杨柳科植物的重要蛀干害虫。由于杨干象幼虫和蛹期均在树皮下或木质部中生活,所以防治难度较大。目前,生产上对于杨干象的防治仍以化学方法为主,生物防治研究甚少。本文研究了杨树的品系、亲本来源、木质部和树皮的物理特征与对杨干象抗性水平的关系;植物挥发物或植物精油对杨干象的行为影响;对杨干象幼虫具有高致
转录因子与顺式作用元件互作参与了众多生物学过程和功能。目前有两种方法研究转录因子与顺式作用元件的互作,即以转录因子研究其识别的DNA序列(TF-centered或者Protein-to-DNA)和以DNA元件研究与其结合的转录因子(Gene-centered or DNA-to-protein)。本研究基于酵母单杂交技术建立了一种以转录因子为中心鉴定其识别作用元件的方法,命名为TF-centere
分别选取上世纪70年代未经过择伐干扰、经过轻度择伐(15%强度)和重度择伐(30%强度)干扰的4种林型(红松阔叶林、核桃楸林、水曲柳林、杂木林)12块样地为研究对象,运用点格局分析方法,探讨不同强度择伐对珍贵树种所处林型演替趋势、珍贵树种空间格局、种间关联性的影响。主要研究结论如下:(1)各林型演替趋势对择伐强度的变化表现不同。红松阔叶林和核桃楸林演替趋势和群落结构受择伐强度的变化影响相对较小,而
APETALA1(AP1)是一个MADS-box转录因子,参与高等植物的成花过程,是花发育研究的热点基因之一。本研究以BpAP1过表达白桦、BpAP1抑制表达白桦和非转基因对照白桦为试材,开展参试株系的生长发育、开花结实和木材材性分析,BpAP1基因的时空表达特异性分析,同时将RNA-Seq数据与白桦基因组的测序结果相结合,对BpAP1的下游靶基因进行预测,探讨BpAP1与其靶基因的调控关系,为揭
木霉菌(Trichoderma spp.)是一种应用前景广阔的生防菌,不仅能够抑制多种病原真菌,而且具有诱导植物免疫反应、促进植物生长、降解土壤中的盐类化合物、农药残留物及重金属等功能,生防潜力巨大,被广泛应用于农业和林业。在对其生防机制的深入研究下发现木霉菌能够分泌一些小分子蛋白能够刺激寄主植物对病原真菌产生防御响应,其中包括刺激植物响应蛋白Epl1(Eliciting Plant Respon
图像恢复是数字图像处理中的一个重要组成部分,是利用受损区域附近的有用信息来修复受损区域信息的技术,常用于修复小的受损区域、文字删除以及目标隐藏。基于偏微分方程的图像恢复技术是近些年在图像处理和分析领域得到快速发展的一类新的图像处理技术。由于它能克服经典图像恢复方法中难以处理的一些技术困难,如今已成为图像恢复的一个热点研究领域。它的基本思路是将图像处理问题转化成某个能量泛函的极小化问题,通过寻找能量