论文部分内容阅读
近场动力学理论(Peridynamics,PD)是一种非局部作用方法,将传统的微分运动方程改写为积分形式,能有效处理材料中的不连续问题,得到材料在载荷作用下的损伤路径。近场动力学将物质点之间的相互作用表示为状态量,特殊形式的状态量退化为键型PD理论。键型PD中,物质点之间相互作用的力密度矢量大小相等、方向相反、作用在一条直线上。文中的算例大部分都是通过键型PD理论进行数值计算的,将非局部形式的应变能密度与经典形式的应变能密度进行等价,可以得到临界伸长率,物质点之间相对伸长率的大小超过临界伸长率时,键发生破坏,损伤开始形成。复合材料层合板是一种各向异性材料,增强纤维的存在使层合板在纤维方向的强度较大,而在垂直于纤维方向的强度则较弱。利用PD理论对复合材料的分析,需要在面内引入相互作用的纤维键与基体键,纤维键只存在于纤维方向,而基体键存在于所有方向;同时,需要控制层合板层与层之间的分层或相对滑动,需要引入层间法向键与剪切键。各向同性材料则相对简单,物质点之间只考虑一种键的相互作用。利用Fortran语言对具体算例编写相应数值程序,可以计算得到不同时间步的损伤形式,能将材料的渐进损伤过程显示出来。本文主要利用PD理论对不同初始缺陷材料进行分析,分别讨论了模型算例的弹性变形与渐进损伤两个过程,平面内载荷作用的算例研究属于准静态问题,首先建立运动动力学方程,然后利用自适应动态松弛法求解稳态响应解。复合材料的研究首先对四种单向铺层单向板进行分析,模拟了单向板的弹性变形与裂纹扩展过程。层合板的损伤研究,分别分别模拟了面内速度边界条件与冲击载荷作用条件下层合板的失效问题,成功得到了不同时刻模型的损伤结果。