硼量子点及其复合物制备与性能研究

来源 :中北大学 | 被引量 : 0次 | 上传用户:tangdongd
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
硼是除高毒性铍外最轻的锂合金元素,是锂离子电池最理想的负极材料之一。但是,硼直接作为锂离子电池负极材料会受到其电化学惰性的阻碍,硼缩小到量子尺寸(量子点)并与碳复合就可以提高硼的电化学活性,另外硼量子点可以引入缺陷吸引正离子,提高锂离子的扩散和储存,减小间隙距离,增加电导率,因此将五硼酸铵和硼酸作为原材料通过水热法制备出硼量子点(BQDs),并将其与葡萄糖复合,从而形成具有孔状结构且具有良好电化学性能的复合物。本文通过“自下而上”合成出硼量子点,研究其光学性质及非易失性存储效应和复合物制备及其作为负极材料在锂离子电池中的应用。主要工作分为下面两个部分:(1)首次提出了以五硼烷铵和硼酸为前驱体,在水热合成条件下,采用自下而上的方法制备出新型BQDs。从透射电镜图可以看出BQDs平均尺寸为6.4 nm,且分散均匀,说明成功制备出量子点。接着通过XRD、XPS、Raman等测试证明我们成功制备出硼量子点。在环境光照射120 d后,通过计算光学带隙(Eg)没有发生变化,说明BQDs在水溶液中具有良好的稳定性。另外,采用BQDs和PVP的混合层作为有源层制作BQDs-PVP存储器件,该器件具有大于10~2的高ON/OFF电流比,在0.1 V的读取电压下具有良好的稳定性,结果证明该器件具有较低的误读率,在闪存设备中具有很大的潜力。(2)以“自下而上”合成得到的硼量子点和葡萄糖为原材料,通过水热法、冷冻干燥和高温炭化法制备出的复合物,作为锂离子电池负极材料表现出优异的电化学性能,结果表明复合物作为锂离子电池负极材料在0.1 A g-1的电流密度下具有2067 m Ah g-1的高放电比容量,在循环200圈后锂离子电池还可以表现出1315.4 m Ah g-1的放电比容量,有着较高的首圈放电容量和良好的循环稳定性。此外,经过0.1 A g-1、0.2 A g-1、0.5 A g-1、1.0 A g-1到2 A g-1的5个连续电流密度后仍然能在2 A g-1下保持297.5 m Ah g-1的容量,有着良好的倍率性能。为了进一步研究复合物的储锂机制,进行了电极动力学分析;在扫速为5.0 m V s-1时,电容行为为主要控制贡献了68%的储锂容量;电容行为贡献的容量随着扫速的不断增大,占比也逐渐增大,在扫速为10.0 m V s-1时,达到了98%。接着对锂离子扩散系数进行了分析:在放电过程中,扩散系数先随着电压降低而快速降低,随后进入平台区,扩散系数为2.1×10-10 cm~2 s-1;而充电过程则相反,扩散系数随着电压升高而降低,随后进入平台区后,最后扩散系数最终稳定在2.5×10-10 cm~2 s-1,表明电极材料在快速传输锂离子时的稳定性较好。
其他文献
Al-Cu-Mn系铝合金具有强度高、加工性能良好、且价格低密度小等优点,因此被广泛应用于航空航天、兵器及汽车等领域。但现有的合金难以满足各领域对合金性能的要求。激光重熔处理通过提高合金的过冷度,细化铸态铝合金表面晶粒尺寸,可以使合金强度提高。而热处理能够进一步提高其力学性能和其他使用性能。本文以Al-Cu-Mn合金作为研究对象,针对传统Al-Cu-Mn合金难以各领域对合金强度和耐磨性的要求,利用激
学位
环氧树脂由于其良好的机械强度、较强的粘附性、优异的尺寸稳定性、优越的耐化学腐蚀性、电绝缘性和广泛的配方多样性等诸多优势,使其在保护性涂料、电子封装材料、粘合剂和高性能复合材料等领域得到了广泛的发展与应用。然而,由于固化后环氧树脂表现出极高的交联密度的结构特性,导致其具有脆性大、韧性差等方面的劣势,从而极大地制约了环氧树脂在更多要求高性能材料领域的应用,因此对环氧树脂进行增韧改性是当前势必需要解决的
学位
现如今全球经济发展迅速,消耗化石能源不断递增,化石能源逐渐减少,面临枯竭,并且环境污染愈发严峻,所以,研发可再生的清洁能源有助于人类社会的可持续发展,储能装置的效率相对较高,在运用可再生清洁能源方面十分重要。超级电容器属于新颖的储能器件,具备较高的功率密度和较高的容量,有着强大的生命周期和较高的安全性,在储能方面表现优异。但是,超级电容器的能量密度相对较小,所以其商业化运用受到了一定的阻碍。所以,
学位
三角帆蚌(Hyriopsis cumingii)作为我国重要的育珠贝类,雌雄个体间的产珠性能不同,其中雄性优于雌性。研究其性别决定和性腺发育,对三角帆蚌的单性化养殖具有重要的理论基础和实践价值。性激素在动物的性腺发育、性别分化以及功能维持方面发挥重要作用。类固醇急性调节蛋白(StAR3)、细胞色素P450(CYP)和羟类固醇脱氢酶(HSD)等酶类可以调节性激素的合成。本实验在三角帆蚌的转录组库中筛
学位
<正>大型电力网络数据库聚集和存储大量的分布式电力电网管理系统数据,常因为通信冲突和电网节点损耗产生故障数据,对故障进行有效的查询是实现电力数据调度和故障诊断的关键。传统的大型电力网络数据库故障数据查询模型采用平均互信息关联维提取算法,当关联维特征出现独立同分布状态时。对故障数据提取性能受限,查询准确度不高。提出一种基于差分累积函数特征挖掘的大型电力网络数据库故障数据查询算法。构建大型电力网络数据
期刊
无土栽培能有效防止土壤连作障碍和土传病害、提高作物产量和品质,节约用水和肥料,节省工力、不受自然条件的限制,其应用与发展越来越受到全世界的关注。目前国内外的无土栽培初期投入太大、营养液配制难度大且管理太复杂繁琐、工艺复杂,不可生物降解、生产成本较高。本论文研发的生物降解聚合物复合材料生长培养基质是一种具有可控孔洞的肥料、基体一体化的双交联双网络水凝胶无土栽培基质。生产成本低,并且可以解决生长培养基
学位
碳纤维增强树脂基复合材料具备比强度高、比模量高、耐腐蚀等优异的物理及化学性能,被广泛应用于航空航天、轨道交通、风力能源等各个领域。但是基体树脂自身韧性不足,其与碳纤维的界面结合性能较差等缺点,限制了复合材料的整体性能。本文选用新型热固性树脂苯并噁嗪作为碳纤维增强复合材料的树脂基体,其具有优异的力学性能、固化零收缩率、高耐热等优点。但是,其固化物的脆性大等问题限制了它在高性能要求的领域进一步发展。现
学位
由于能源的不断消耗与化石燃料的枯竭对全世界的能源与经济安全等都构成了极大威胁,故氢能作为一种环境友好和可再生的新型能源已经引起了科研工作者的广泛关注。在氢能的开发利用过程中,研究者发现了一类能够高效催化产氢的金属酶催化剂——氢化酶,它既为未来改良生物制氢系统打下坚实的基础,又可将其列为贵金属铂催化剂的替代品之一。特别的是,含有催化活性中心二铁二硫蝶状簇核的天然铁铁氢化酶的催化产氢能力尤为出色,所以
学位
超级电容器作为一种具有高功率密度和优异的循环稳定性电化学储能装置,在过去几十年中受到了日益重视,然而其较低的能量密度通常限制了超级电容器的广泛应用。电极材料的电化学性能是影响超级电容器电荷存储能力的一个重要因素。因此,发展高性能的电极材料对超级电容器的实际应用具有重要意义。锰钴氧化物(Mn Co2O4、Co Mn2O4和Mn Co2O4.5)具有较好的氧化还原活性、较高的理论比容量、丰富的原材料来
学位
吸波复合材料的发展方向是“薄、轻、宽、强”,因此,传统结构型吸波复合材料的发展越来越受到限制,而超材料具有更多更灵活的设计,更符合吸波复合材料的发展。本文通过绿色工艺制备得到性能稳定的磁电双组份吸波功能粒子四氧化三铁@还原氧化石墨烯(Fe3O4@RGO),并使其作为填料与环氧树脂基体(EP)制备得到Fe3O4@RGO/EP吸波复合材料。此外,利用CST微波工作室仿真模拟和实验相结合的方式设计出Fe
学位