论文部分内容阅读
本文在分析乙烷裂解炉模拟研究的历史、现状和发展趋势的基础上,进行乙烷裂解炉炉膛与炉管之间热传递和管内反应过程的数值模拟以及操作条件优化的研究。研究内容包括以下几个方面:(1).以区域法为基础,建立炉膛与炉管之间传热的数学模型。编制直接交换面积的计算程序。通过对比文献数据,验证了计算程序的可靠性。(2).采用耦合法对KTI-SMK乙烷裂解炉进行数值模拟。此方法能够描述热炉膛与炉管之间热传递及管内反应过程相互间耦合关系:分别以活塞流、缩壳模型以及区域法描述管内流体流动、气固非均相反应以及炉膛传热。将工业生产中所得的现场数据与模拟计算结果进行比较,两者基本吻合,从而证明了所建立的乙烷裂解炉管烧焦过程数学模型以及计算程序的合理性。模拟计算获得了裂解炉管内详细的温度、焦炭厚度、热通量分布等参数,揭示了裂解炉管内传热、传质及反应过程的基本特征及其相互作用规律,为乙烷裂解炉烧焦程序的优化提供了依据。(3).流体在流经炉管弯头处的返混程度加强,因此采用CSTR模型描述此处流体的流动,即采用PFR与CSTR串连的反应器模型对烧焦过程进行模拟计算。(4).恒定炉膛操作条件,调整炉管入口气体流量和温度,对烧焦过程进行模拟计算,得到:①入口温度分别是580℃,670℃,管材耐受的极限温度1100℃条件下,安全烧焦允许的最大空气流量曲线。②在入口温度在620℃时,得到预测烧焦过程管壁最高温度的拟合方程,拟合方程的计算值与烧焦模拟的计算值的误差最大为15℃。对采用恒定炉管入口空气、水蒸汽流量方式烧焦的裂解炉,该拟合方程对优化其烧焦程序,保证安全烧焦,有一定的指导意义。(5).结合后续废热锅炉的操作特性,提出了设计烧焦程序的基本步骤,以及调优目前烧焦程序的新方法:根据炉管出口温度调节进口气体流量和入口温度,得到非恒定炉管入口气体流量、炉管入口温度方式下的新烧焦程序。模拟结果表明:新程序的烧焦时间与目前实际烧焦时间相仿,但管内残碳量、空气及水蒸汽的累计消耗量有所降低,炉管出口CO2体积分率和空气与水蒸汽的流量比都在允许的生产控制范围内,最高管壁温度低于管材的极限温度。(6).保持裂解炉炉膛的操作条件,利用复形调优的优化方法,针对恒定炉管入口气体流量和温度的烧焦方式,求出了以烧焦时间最短为目标的最优操作条件。该操作条件下,烧焦时间明显缩短,管壁最高温度小于管材的极限耐受温度,属安全烧焦操作范围。本文所得结果,对改进现有气体原料裂解炉烧焦程序及在新型和新建裂解炉设计与开发建设中提出科学、合理的烧焦程序具有指导意义。