论文部分内容阅读
ZnO是一种n型直接宽带隙Ⅱ-Ⅵ族金属氧化物半导体材料,具有一系列独特的物理、化学性能。其中,ZnO的一维纳米结构极大改善了其光电及电输运等性能,并被广泛应用于太阳能电池、光电化学(PEC)电池等能量转换器件或是紫外探测、生物传感等信息传感器件。本文采用简单的水热法,较低温、无催化、高产量地制备了高质量ZnO纳米棒阵列。基于此材料,先后与二维石墨烯薄膜、三维空间网络状石墨烯材料、金纳米颗粒以及载流子浓度可调的Cu20窄带隙p型半导体材料相结合构建性能相互弥补、作用相互协同的ZnO基复合纳米结构,实现了ZnO/rGO、ZnO/3DGF、Au@ZnO 以及ZnO/Cu2O四种异质结光阳极的设计与构建。系统研究了它们对光电化学性能的提升效果以及相应的阳极结构优化、表面等离激元共振效应、p-n结构建及界面调控等一系列增强机制。并进一步将所构建光阳极应用至光电化学型生物传感器,实现了对谷胱甘肽(GSH)生物分子的高性能探测。此外,亦发现了复合纳米结构光阳极的PEC性能对其PEC生物传感性能影响的基本规律。针对电极结构设计与优化,在还原氧化石墨烯(rGO)薄膜表面实现了ZnO纳米棒阵列的原位生长。紫外光辐照下,由于rGO层极强的电子提取性能促进了光阳极内部的电子输运,ZnO/rGO相较于纯ZnO光阳极具有提升的PEC性能。在OV (vs.Ag/AgC 1)工作偏压下,所构建的ZnO/rGO基PEC型生物传感器对GSH实现了2.17μM(n=3)的探测下限以及10-2OOμM(R2=0.997)的线性范围。对电极结构进行进一步优化,在3D空间网络状石墨烯泡沫的表面实现了ZnO纳米棒阵列的原位生长。紫外光辐照下,由于3D石墨烯的大表面积及高电子传输效率等优势,ZnO/3D石墨烯的PEC性能相较于ZnO/rGO或纯ZnO光阳极均有明显的增强。在0V(vs. Ag/AgCl)工作偏压下,所构建的ZnO/3D石墨烯基PEC型生物传感器对GSH实现了1.79 μM(n=3)的探测下限以及10-300 μM (R2=0.991)的线性范围。针对表面等离激元共振效应,利用紫外还原法在ZnO纳米棒阵列表面合成了Au纳米颗粒。太阳光辐照下, Au纳米颗粒的表面等离激元共振效应增强了光阳极在可见光部分的吸收并在Au表面产生了大量热电子,随后注入至ZnO的导带,从而获得了提升的PEC性能。在OV(vs.Ag/AgCl)工作偏压下,所构建的Au@ZnO基PEC型生物传感器对GSH实现了3.29 μM(n=3)的探测下限以及20~1000 μM(R2=0.996)的线性范围。针对p-n结的构建与界面调控,利用电化学沉积法在ZnO纳米棒阵列表面合成了p型Cu2O薄膜。通过改变沉积生长时间实现了对Cu2O薄膜厚度及结区面积的调控,并通过改变Cu2O中载流子浓度实现了对ZnO/Cu2O异质结界面处电子结构的调控。优化获得的具有最佳光捕获能力及最大内建电场强度的Zn0/Cu2O p-n异质结从光吸收与光生电荷分离两个角度贡献于提升的PEC性能。在0 V(vs.Ag/AgCl)工作偏压以及太阳光辐照下,所构建的ZnO/Cu2O基PEC型生物传感器对GSH实现了0.42 μM(n=3)的探测下限以及10-1000 μM(R2=0.991)的线性范围。此外,通过对所构建的ZnO基复合纳米结构PEC型生物传感器的探测性能进行比较,发现随着光阳极PEC性能的提升,其PEC生物传感性能得到了极大的改善。本研究以功能器件的构建为导向,在获得高性能光电化学型生物传感器的同时,深入研究了不同形式ZnO基复合纳米结构光阳极的光电化学性能及其相对应性能增强手段的工作机制。通过该研究,力争对ZnO基复合纳米材料的性能有进一步的理解,以推动其在光电化学以及相关太阳能光伏领域当中的应用与发展。