论文部分内容阅读
随着经济和技术的快速发展,各类信用消费纷纷涌现,信用社会逐渐形成,我国步入了信用时代。在这一时代背景下,商业银行的个人信贷产品种类也不断丰富,个人消费信贷规模迅速增长,如何开展有效的个人信用评分,做好信用风险管理就显得尤为重要。个人消费信贷所带来的个人信用风险具有分散性、普遍性、非系统性等特点,已经成为商业银行最难控制管理的风险之一。个人信用评分系统通过充分挖掘历史信用样本的有效信息,对影响个人消费信贷中个人信用的主客观因素进行综合考察,能够对个人信用风险做出预测判断,是指导商业银行个人信用风险管理的重要工具之一。因此,本文以商业银行个人信用评分系统为研究对象,阐明了个人信用评分系统在促进信贷资源有效配置上的重要作用,并以此为出发点,提出个人信用评分系统的优化目标,有针对性地对个人信用评分系统进行优化。本文从商业银行个人信用评分系统构成的角度总结并梳理了国内外的相关研究,在此基础上对相关概念进行了界定,明确了个人信用评分系统的优化目标,运用博弈论分析了商业银行个人信贷业务中的博弈关系,进而从理论层面明确了个人信用评分系统优化的关键问题,包括缺少宏观指标及指标冗余问题、拒绝推论及样本容量问题、信用评分模型的选择问题、违约损失及信用等级问题,针对这些关键问题,全面地优化了个人信用评分系统。首先,针对个人信用评分指标体系中存在的缺少宏观指标及指标冗余问题,本文从形成有效且完善的信用评分指标体系的角度出发,分析了影响个人信用的主要因素,提出了影响个人信用的宏观经济因素,并基于结构方程模型验证了宏观经济因素对个人信用的影响,提取了有效的宏观经济指标;设计了PSO-CFS算法对个人信用指标体系进行属性约简,解决指标冗余问题,提高了系统的评分精度,同时也有利于商业银行有针对性地进行信用调查和管理。其次,针对个人信用评分样本集中存在的拒绝推论及有效样本容量不足两个关键问题,本文从构建具有代表性的个人信用评分样本集的角度出发,提出采用案例推理方法引入拒绝样本来解决拒绝推论问题,并针对案例推理方法中案例检索和案例重用假设的不合理性,对案例推理方法进行了优化,设计了优化的案例推理模型,提高了案例推理对拒绝推论问题的解决能力;采用蒙特卡洛模拟生成有效的信用样本,增加样本集中有效样本的数量,进而构建了更能代表样本总体的个人信用评分样本集。再次,针对个人信用评分模型中存在的模型的选择和优化问题,本文从建立精确的个人信用评分模型的角度出发,对现有的多种单一模型进行研究分析,阐明各个单一信用评分模型的优点及局限性,并在此基础上建立基分类器池;分别以精度、差异度和误判损失率为选择标准,考虑基分类器之间的互补性和差异性,设计全局搜索算法输出最优分类器子集;通过比较,选择了行为知识空间法作为基分类器的融合方法,最终根据商业银行信用风险管理需求实现最优组合模型的输出。最后,本文针对个人信用评分系统应用中存在的忽略违约损失及缺少信用等级细分这两个关键问题,对个人信用评分中的违约损失率进行了界定,明确了个人信用评分中违约损失率的计算方法,以“信用等级越高,违约损失率越小”为基本原则,构建了基于违约损失率的信用等级划分模型,并以我国商业银行个人信用样本集中的样本进行了实证,建立了9级个人信用等级模型,对各个级别的贷款用户特征进行了总结,简单阐明了商业银行对于不同等级客户所应采取的主要信用风险管理策略,完成了对贷款申请者信用等级的有效细分,加强了系统在商业银行信用风险管理中的应用。综上,本文对个人信用评分系统的指标体系、样本集、评分模型及应用四个环节进行了全面优化,提高了系统对信用风险的识别能力。本文研究的理论意义在于,分析了个人信用评分系统对金融市场信贷配置的重要作用,提出了个人信用评分系统的优化目标;结合宏观经济因素对个人信用的影响,为解决个人信用评分中的拒绝推论问题提出了较为有效的方法,同时构建了更具有适用性的个人信用评分模型,以及个人信用等级划分的方法。本文研究的实际意义在于从信贷资源优化配置及商业银行信贷决策的角度去优化个人信用评分系统,使其能够更好地为商业银行信用风险管理而服务,提高商业银行的风险管理能力,促进金融市场健康发展,同时也为信用时代下政府及其他金融机构开展信用风险管理提供参考。