论文部分内容阅读
自2006年Pfeiffer提出基于常规X射线源的光栅相衬成像方法以来,此相衬成像方法得到了广泛的研究,并最有可能应用于实际生活中。该成像方法的优点是在常规X射线源中就可获得相干度较高的X射线光子,降低了对X射线光源的要求。但是此相衬成像方法所要求的分析光栅为大面积小周期结构,而制作大面积小周期光栅一直是世界性难题。瑞士学者Tilman Donath在2009年提出了逆Talbot-Lau光栅相衬成像方法。此方法增大了分析光栅的周期,降低了分析光栅的制作难度,但是需要制作小周期的源光栅。本文就基于逆Talbot-Lau光栅相衬成像方法以解决源光栅制作问题开展工作,将位于X射线源后的源光栅通过微纳加工方法直接制作在普通X射线源中。这样,逆Talbot-Lau光栅相衬成像系统就不需要源光栅,因此可以简化成像系统结构,对基于逆Talbot-Lau光栅相衬成像方法应用于实际生活中起到了促进作用。本文围绕微结构透射阳极X射线源器件的研制来开展工作,设计和制作了一款平面型X射线阴极,在热解石墨和导电金刚石衬底上制作了微米级的钨阵列阳极结构。具体工作内容如下:1、从电子发射的角度分析螺旋状阴极存在的不足,设计出一种平面型阴极结构,在开放式真空器件测试平台上测得平面型阴极结构实际电子焦斑寸尺为0.4mm×0.4mm,符合透射式X射线源对焦斑尺寸大小的要求。2、分析透射式结构在相衬成像系统中的优势,通过公式计算出在30kV时X射线可透过金属钨膜的厚度为1.07μm,分析并选择原子序数低、熔点高、导热性高以及导电性良好的碳系物质作为阳极衬底。3、使用光刻工艺、磁控溅射镀膜工艺、溶脱剥离工艺在热解石墨和导电金刚石衬底上制作出周期24μm,线宽3.5μm的钨阵列结构,在各种衬底上制取的钨膜厚度为1μm左右,比较各种衬底工艺参数的差异,最后在开放式真空器件测试平台上对带有钨阵列结构的热解石墨和导电金刚石阳极衬底进行轰击测试。