论文部分内容阅读
自从1966年华裔科学家高锟提出光纤通信技术后,由于波分复用(WDM)、偏振复用(PDM)、高阶调制以及正交频分复用(OFDM)等技术的应用,单模光纤(SMF)的通信容量有了几个数量级的提升。而由于互联网技术的快速发展,尤其是物联网、电子商务、高清网络视频等的快速发展,人类社会对光纤通信系统的容量需求也日益增长。但SMF的通信容量并不能无限提升,由于香农极限、光纤非线性效应以及光纤熔融效应等,其被限制在100 Tb/s。而近几年实验证明的SMF的通信容量已经越来越接近这一理论值,即SMF将面临容量危机。为了进一步满足数据流量的需求,下一代光纤通信技术需要在提升光纤通信容量的同时,降低每比特的传输成本和能耗。在这种背景下,空分复用(SDM)技术受到越来越多的关注。SDM有两种技术路线,其一为多芯光纤(MCF),其二为模分复用(MDM)技术。其中MDM提供更高的信息密度,因而被认为是最具前景的技术。MDM技术基于模式这一维度,以少模光纤(FMF)取代传统的SMF,从而将信道由SMF中的基模拓展到FMF中的少数几个低阶模,而这几个低阶模具有与基模相同的信息传输能力,因而可以实现光纤通信容量的极大提升。在MDM系统中,实现模式的转换、复用以及解复用的模分复用器是其中的核心器件。就目前而言,模分复用器的设计主要基于三种技术平台:空间光学元件、光纤以及平面光波导(PLC)。其中基于PLC的模分复用器具有结构紧凑、易于集成、功能丰富等的优点,因而被更多的研究。就模分复用系统而言,操控尽量多的模式以增加系统容量,拥有较大的带宽以兼容现有的WDM系统,具备可重构功能以实现灵活高效的网络结构是模分复用器的重要发展方向。本论文基于以上模分复用系统的发展需求,利用聚合物材料,开展了一系列基于PLC的模分复用器的研究工作。论文的主要研究工作和取得的成果总结如下:1.提出了一种非等高定向耦合器(DC),基于该种DC,可以非常方便地实现在竖直方向上模场对称性不同的两个模式之间的耦合。作为验证,设计并制作了基于该种DC、能操控E11和E12模式的模分复用器。实验制作的器件包含输入/输出端总长度为13 mm,其在1530-1560 nm的波长范围内耦合效率大于95%;对于E11和E12模式,器件插入损耗分别为9.6 dB和12.8 dB。提出的非等高DC,可有效实现竖直方向模场对称性不同的两个模式之间的转换。2.提出一种基于锥形结构与非等高DC结合的新型DC,提出的该种DC具有大的工作带宽和制作容差。通过级联四个这样的DC,设计并制作了能操控E11、E21、E12、E22和E31五个模式的模分复用器。完成制作的器件包含输入/输出波导总共长度为21 mm。测试结果表明,对于x、y两个偏振,级联的四个耦合器在C+L波段(1530-1605 nm)都能实现大于94.5%的耦合效率。对于器件解复用端的五个端口,其插入损耗分别为15.2 dB、11.6 dB、14.1 dB、19.1 dB和10.6 dB。实验结果证明,提出的锥形非等高DC能够显著地提升耦合器的制作容差和工作带宽,并有潜力实现更多模式的复用/解复用。3.设计了能操控E11、E21、E12、E22、E31以及E13六个模式的模分复用器。分析了PLC中前六个模式的模场分布特点,并在此基础上,通过将五个锥形非等高DC级联,完成了能操控这六个模式的模分复用器的设计与优化。对比讨论了PLC与FMF中前六个模式的差异,分析了实现二者之间转换的方法。设计的模分复用器结构紧凑,包含输入/输出波导的总长度为19 mm,器件操控的五个高阶模在1500-1620 nm的波长范围内的耦合效率都大于75%;最后,对设计的器件进行了制作,由于制作误差,所制作的器件的部分参数与设计参数不一致,导致器件能够实现E11、E21、E12、E22四个模式的复用,而不能实现对E31和E13模式的复用。4.提出了一种超短的嵌入波导内部的长周期波导光栅(LPWG)。提出的LPWG通过将光栅扰动区域置于波导内部两个耦合的模式具有最大场重叠因子的区域,实现了LPWG耦合系数的最大化,减少了光栅的长度。进一步地,通过控制光栅的色散特性,实现了器件的超宽带工作。基于这种光栅,设计和制作了能操控E11和E21模式的模式转换器。制作的器件的光栅区域长度仅834μm,只有普通光栅长度的四分之一,但在C+L波段,其两个偏振态的耦合效率都超过98.2%。提出的这种光栅,能够在明显提升光栅的带宽的同时缩短光栅的长度。5.基于聚合物的热光效应,提出了一种热感应的LPWG与Y分支级联的、能操控E11和E21模式的可重构模分复用器。首先,研究了热光器件的设计和仿真方法,基于此,设计了一种热感应的LPWG;其次,将提出的热感应的LPWG与Y分支结合,实现了E11和E21模式的复用/解复用。此外,通过控制光栅的色散特性,器件的宽带得到极大提升。所制作的器件包含输入/输出波导总长度为14 mm,开关功率为198 mW。对于操控的E11或者E21模式,在C+L波段,器件关闭/开启状态下的消光比都能超过13 dB。测试表明,器件开关响应特性上升时间为0.55 ms,下降时间为0.75 ms。