光解水的第一性原理非绝热量子动力学研究

来源 :中国科学院大学(中国科学院物理研究所) | 被引量 : 0次 | 上传用户:Ruiming123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
传统的基态密度泛函理论分子动力学揭示了许多材料的基本物理规律,这使得其在物理和化学领域都有广泛的应用。但当我们考虑到大量存在的含时非绝热现象,则需要新的含时密度泛函理论(Time-dependent density functional theory,TDDFT)。在TDDFT的基础上,我们建立了基于数值原子轨道基和基于平面波的含时第一性原理计算软件,来处理非绝热的激发态分子动力学(Molecular dynamics,MD)。为了处理电子与电子之间的关联相互关系,我们在TDDFT中用有效Hubbard U实现了在位的库仑斥力,将来以进一步研究强相关材料。采用TDDFT-MD模拟方法,我们研究了水/半导体界面上的光催化水分解的非绝热动力学,其中电子和原子核的运动是强耦合的。虽然实验上已经实现了许多光催化的应用,但其基本机制和动力学过程还远不为人所知。在本文中,我们的主要研究结果如下:1.我们首先研究了无金属元素的光催化剂——石墨相氮化碳(Graphitic carbon nitride,g-C3N4)在水界面的非绝热量子动力学,证明了电荷转移通道和化学键断裂/形成之间的关系。同时提出的三步模型阐明了空穴驱动的氢原子转移过程在水分解中的重要作用。分裂后的两个氢原子可以结合在一起形成氢气,剩余的OH自由基可以产生中间产物(如过氧化氢H2O2)。2.其次我们研究了在最重要的金属氧化物二氧化钛(Ti O2)上的光催化水分解过程。结果表明,金红石型Ti O2(110)表面存在电子主导水分解和空穴诱导水分解两种途径。而空穴转移是由极化子的光激发电子和原子核的耦合的动力学,包括Jahn-Teller畸变和恢复过程所主导。这是在传统的波恩-奥本海默动力学所观察不到的。这种极化子辅助的水分解动力学也可能揭示了钙钛矿型材料的关键机制,为提高光催化活性和材料设计提供了新的思路。我们的研究展示了光催化水分解的量子动力学的进展,从微观层面全面理解了非绝热电子-原子运动,并从动力学的角度为高效水分解的光催化剂的表征和进一步发展提供了重要的见解。在全量子动力学模拟方面,我们提出了实时TDDFT和环状聚合物分子动力学(Ring polymer molecular dynamics,RPMD)相结合的方法,来考虑核量子效应(Nuclear quantum effects,NQE)。这样,我们可以同时处理分子(臭氧)和周期性体系(石墨烯)。当考虑NQE时,我们发现了在光激发下的臭氧的波包劈裂,和石墨烯中载流子动力学受量子运动影响的超快指数衰减。这种量子性质在混合量子-经典动力学(如TDDFT-MD)中是观察不到的。我们的全量子模拟方法可以应用于研究许多材料的激发态动力学和原子运动的量子效应。本文总结了g-C3N4和金红石Ti O2(110)表面光催化水分解的研究进展,以及我们新发展的全量子化模拟方法。这些结果将为深入理解光激发现象和量子运动提供重要的证据。
其他文献
真空环境下MoS2基固体润滑轴承的摩擦磨损特性对轴承的工作性能及磨损寿命具有重要影响。以真空球-盘摩擦磨损试验机为依托,基于滚动轴承拟静力学和Archard磨损理论,建立了固体润滑轴承的磨损寿命模型,并进行了试验验证。采用数值仿真方法,研究了固体润滑轴承工况参数和结构参数对其摩擦磨损特性的影响规律。结果表明,所建立的模型能够较好地预测轴承的磨损寿命,计算结果与试验结果的误差在11.7%以内。承受轴
期刊
<正> 鹅细小病毒病是小鹅和番鸭(又称瘤头鸭)的高度传染性疾病,它又称为德兹西氏病(Derzsy’sdisease)、鹅流感、鹅瘟或小鹅瘟、鹅肝炎、鹅肠炎、鹅传染性心肌炎或鹅腹水性肝肾炎。这些病名说明这病有多种病理特征。根据受感染小鹅的龄期不同,这病可分为急性,亚急性或慢性三个型。
期刊
量子技术和微纳米器件的发展使得人们拥有了对由量子力学支配的物理尺度的操作能力。近年来,尤其以量子信息和量子计算技术的发展最为迅速。量子计算机同现有的电子计算机的不同之处在于,量子计算机使用量子比特作为其存储及运算的载体,而经典计算机则使用由经典载体构成的经典比特作为载体。量子比特一般由一个两能级的量子系统作为实现,由于量子力学的态叠加原理,由量子态的叠加性质使得量子比特拥有更大的数据储存能力。相比
学位
DNA是遗传信息的载体,核小体由DNA缠绕组蛋白1.7圈形成。DNA和核小体的结构稳定对生命体至关重要,异常结合一些分子(如蛋白分子或者小分子等)可能会改变其结构和功能,进而导致疾病的发生。对这些复合物体系的研究有助于阐明一些生物学过程,并帮助理解一些疾病的发病机理。单分子技术是近三十余年发展起来的一门新兴的生物学技术,其优点在于克服了经典生化实验中的集合平均效应,精确解析生物大分子动态结构。在单
学位
为了提高G102Cr18Mo高碳不锈轴承钢的洁净度、细化碳化物组织,采用真空感应熔炼、两次真空自耗重熔、大锻压比锻造的工艺路线,研究了真空处理及大锻压比锻造对化学成分、气体含量、夹杂物分布、二次枝晶间距及碳化物颗粒度的影响。研究结果表明,真空感应熔炼过程(VIM)中,随着铝含量的增加,碳的脱氧能力大幅降低,即使铝质量分数为0.003%也对碳的脱氧能力有明显的阻碍作用;真空自耗重熔过程(VAR)由于
期刊
石墨烯的问世开启了二维材料研究的新时代。石墨烯的载流子是无质量的狄拉克费米子,遵循二维狄拉克方程。石墨烯因此成为了研究相对论性量子力学的一个新型平台,在凝聚态物理的框架下研究新奇的相对论量子现象成为可能。随着研究的深入,更多的新型二维材料相继被成功制备,比如过渡金属二卤化物、硅烯和磷烯等。受系统维度的限制,二维材料的载流子迁移和热量扩散都被局限在平面内。因此,二维材料展现出许多非比寻常的物理性质,
学位
由于太赫兹辐射产生与探测技术的快速发展和进步,越来越多在这一频段的新颖物理效应被发现并得到成功的应用。其中,新颖物理效应的来源可能分为两支,其中一支源自于太赫兹辐射的场强越来越强,将太赫兹辐射与物质相互作用的能量尺度推进到非微扰、非线性的范畴。另一支则来源于新颖功能材料的发现和研究,由于其特殊的电子能带或者磁性结构,这些新颖的材料不仅能利用电子的电荷,还能利用它的自旋自由度,来极大地丰富这一频段器
学位
激光的发明无疑是打开超冷原子世界大门的一把金钥匙,而玻色爱因斯坦凝聚的实现则为冷原子物理中的各种新现象的发现铺平了道路。基于最近实验上发现的外尔半金属,我们构造了超冷原子物理中的外尔费米子气体的理论模型,研究体系的集体激发行为。本论文主要通过研究两类外尔费米子体系的响应函数来研究体系的集体激发性质。对于第Ⅰ类外尔费米子体系,我们考虑没有倾斜项的情况。我们从具有排斥相互作用的外尔费米子哈密顿量模型出
学位
纳米光子学是在纳米尺度上研究光和物质相互作用的交叉学科,在光电子学、信息、材料物理以及生物传感等诸多领域都具有重要意义。极化激元是纳米光子学的重要组成部分,它是由自由空间光子和电子、声子、激子等极化电荷杂化产生的准粒子,在突破传统光学的衍射限制,实现光子的亚波长调控,增强光与物质相互作用等方面发挥了巨大作用。近年来出现的二维材料,极大地丰富了极化激元的材料范畴,给极化激元的发展带来了新的活力。对于
学位
由于在容错拓扑量子计算上存在巨大的应用潜力,凝聚态物理学界对于马约拉纳零能模(MZM)的研究如火如荼。近几年来,人们在具有拓扑表面态的铁基超导体磁通涡旋中心观测到了清晰的MZM信号,由此掀开MZM载体的新篇章。早期的MZM载体体系,如p波超导体和近邻超导异质结体系,被实验观测和样品生长等方面的技术难关所困扰,相比之下,铁基马约拉纳零能模载体材料(简称:铁马材料)体系具有制备方法成熟和实验现象明确等
学位