论文部分内容阅读
多聚轮烷是由一个或多个环状分子(作“转子”)和一条或多条线形聚合物分子(作“轴”)通过非共价键组装成的超分子体系。当线状聚合物分子两端用大基团封闭时称为轮烷;而没有对线性聚合物分子进行封端处理的称为准轮烷。环糊精是多聚(准)轮烷重要的主体化合物之一,环糊精(CD)与大分子间的组装以其选择性、可调控性和生物相容性等优势引起广泛关注。本文分别尝试通过直接聚合、大分子单体包合物聚合等方法制备环糊精(准)轮烷,分别研究了环糊精对极性不同的两种单体甲基丙烯酸甲酯(MMA)、甲基丙烯酸丁酯(BMA)自由基聚合的影响,环糊精与甲基丙烯酸多苯乙烯烷基酚乙氧基酯(SEM-25)多聚准轮烷的制备、梳状环糊精多聚轮烷的制备以及环糊精与碳硅烷树枝状化合物包合物制备等内容,并采用傅立叶变换红外光谱(FT-IR)、核磁共振波谱(1H-NMR或13C-NMR)、热分析(DSC或TGA)、x-射线粉末衍射(XRD)、紫外-可见光吸收光谱(UV-VSC)和高分辨扫描电子显微镜(HSEM)等方法对产物进行了表征。具体的研究内容及结果如下:1、研究了在α-、β-、γ-CD存在下,BMA,MMA自由基聚合直接制备环糊精(准)轮烷的方法。研究表明无论采用油溶性、水溶性还是氧化还原体系都不能制备得到主链型环糊精多聚(准)轮烷。2、考查了不同种类、不同用量的环糊精对BMA、MMA无皂乳液聚合的反应速度、乳胶粒度分布等的影响,并对反应机理进行了研究。实验结果表明:(1)环糊精对BMA、MMA的无皂乳液聚合反应具有促进作用。环糊精的存在,特别是当环糊精浓度达到临界浓度以上时可以有效提高聚合反应的速度和单体转化率,乳胶粒粒径变大,分布变窄。(2)α-、β-、γ-CD对疏水单体无皂乳液聚合反应的影响不同,对BMA聚合转化率和反应速度的影响顺序为α-CD<β-CD<γ-CD;对MMA聚合转化率的影响顺序为α-CD>β-CD>γ-CD。(3)采用紫外-可见光分光光度计定量测定了聚合物中CD含量方法,本实验条件下,单个环糊精所对应的聚合物链节数至少为77。3、提出在环糊精存在下MMA和BMA无皂乳液聚合遵循相转移催化条件下的均相成核机理,较好地解释了不同极性、不同水溶性的两种单体BMA、MMA在环糊精水溶液中无皂聚合反应行为。环糊精存在下BMA无皂乳液聚合遵循相转移催化条件下的均相成核机理;环糊精对MMA的影响较为复杂,浓度较低时,反应遵循均相成核机理,当CD浓度提高时,相转移催化条件下的均相成核对反应的影响随之增加。4、采用两种方法分离并纯化了一端为双键,另一端为多苯基大基团的大分子单体SEM-25。5、研究了SEM-25与α-、β-、γ-CD之间的包合作用,制备得到环糊精准轮烷(AS),并采用FT-IR、XRD、DSC、UV-VSC、1H-NMR等方法对准轮烷的结构进行了表征,准轮烷的结构为“隧道”型。制备多聚准轮烷AS的主要影响因素为温度,SEM-25/α-CD不同摩尔比不影响AS的结晶完善度。另外,SEM-25与β-CD不能形成包合物,而与γ-CD可以形成非晶包合物(YS)。6、探索由多聚准轮烷AS制备多聚轮烷的方法。分别采用水溶性引发剂过氧化苯甲酰(KPS)、油溶性引发剂偶氮二异丁氰(AIBN)以及(NH4)2S2O8-NaHSO3氧化还原体系引发AS的均聚及与BMA共聚,结果表明位阻较大的AS通过均聚反应制备难以得到梳状多聚轮烷;采用KPS引发AS与BMA共聚也没有得到多聚轮烷;采用NH4)2S2O8-NaHSO3氧化还原体系可以引发AS与MMA的共聚反应,得到棒状的环糊精基多聚轮烷。7、研究了α-,β-,γ-CD与多代溴苯为核的硅碳烷树枝状化合物G0(PhBr)-G3(PhBr)和多代氟苯为核的硅碳烷树枝状化合物G0(5F)-G3(5F)八种树枝状化合物之间的包合作用。研究表明这三种环糊精均可以和0代的树枝状化合物形成包合物,每一个树枝状化合物分子被两个环糊精包合。随着代数的增加,包合作用越来越困难;环糊精与第1代树枝状化合物在包合过程中发生乳化;与2代以上的树枝状化合物不能发生包合作用。