【摘 要】
:
质谱-谱学分析方法的联用技术是研究气相离子团簇的分子结构及性质的主要手段之一。通过实验测量质量选择的离子团簇的光谱或者光电子能谱,结合高精度量子化学计算,可以准确地获得离子团簇的几何结构和电子结构、分子内的化学成键以及分子间相互作用等特性。本论文分别应用离子阱与红外光解离光谱和负离子光电子能谱相结合的技术,研究了羰基铁化合物的次序断键和协同解离过程和六氟异丙醇分子与卤素离子间的相互作用,取得了如下
论文部分内容阅读
质谱-谱学分析方法的联用技术是研究气相离子团簇的分子结构及性质的主要手段之一。通过实验测量质量选择的离子团簇的光谱或者光电子能谱,结合高精度量子化学计算,可以准确地获得离子团簇的几何结构和电子结构、分子内的化学成键以及分子间相互作用等特性。本论文分别应用离子阱与红外光解离光谱和负离子光电子能谱相结合的技术,研究了羰基铁化合物的次序断键和协同解离过程和六氟异丙醇分子与卤素离子间的相互作用,取得了如下主要成果:(1)六氟异丙醇与卤素离子间的电荷-偶极相互作用:六氟异丙醇(HFIP,CF3-C(H)(OH
其他文献
采用小分子凝胶剂来制备离子液体凝胶,可使离子液体成为准固态且不影响离子液体的固有性能。小分子离子液体凝胶通常具有多刺激响应性,加上离子液体本身具有的多种性能,小分子离子液体凝胶有被发展成为智能材料的潜力。目前所报道的小分子离子液体凝胶通常机械性能较差,限制了其实际应用价值。 本文研制了一系列高效的D-葡萄糖酸缩醛类凝胶剂(Gn,PG16,B8),可以在低浓度下凝胶多种离子液体。结果表明,凝胶剂分
二氟亚甲基(CF_2)常被视作氧原子、羰基和亚甲基的生物电子等排体,被广泛用于药物和生物活性分子的设计中。相关研究表明向有机分子中引入二氟亚甲基可以明显提升母体分子的亲脂性和代谢稳定性。因此,二氟烷基化反应引起了越来越多有机化学和药物化学工作者的关注。在过去的十年间,过渡金属催化或参与的二氟烷基化反应成为当前有机氟化学领域的研究热点之一。本论文详细论述了该领域的最新研究进展,并且发展了一种以廉价易
含氮化合物广泛地存在于自然界中,如生物碱和氨基酸等,碳氮键的构筑一直以来都是合成化学中的热点及难点。近年来碳氢键直接氨基化反应由于其简洁、高效以及原子经济性等原因,吸引了化学家们极大的兴趣。偶氮二甲酸酯是一类具有高活性的化合物,具有较强的亲电性,被广泛地应用于多种化学反应中,而用于惰性碳氢键的氨基化反应则未有报道。本论文围绕着以偶氮二甲酸酯为氮源的碳氢键氨基化这一目标,首先实现了惰性亚甲基碳氢键的
蛋白巯基作为生物巯基的重要组成部分,在维持蛋白质的结构和功能方面发挥着重要作用。蛋白质结构中的半胱氨酸残基具有独特的反应活性和空间排布,其不同的还原态和氧化态形式(例如蛋白巯基、蛋白邻二巯基和蛋白二硫键等)也直接影响着生物体的氧化还原稳态。与此同时,随着荧光成像技术在化学生物学、临床诊断和药物研制等领域的不断发展,荧光探针作为一种检测工具,由于其灵敏度高、操作简单和生物兼容性好等特点而受到越来越多
结构确定的货币族金属(金、银、铜等)配合物因其优美的结构和可调节的光物理性能不断受到科研工作者们的广泛关注,它们在生物、医药、催化、光学和传感等众多领域已呈现出广阔的应用前景。然而,合成过程的不可控性以及结构稳定性差等缺点也严重阻碍了货币族金属配合物在实际应用中的发展。相较于目前应用较多的炔基和巯基配体,膦配体较强的配位能力及可控的空间构型有助于提高此类化合物的稳定性,从而拓宽此类材料的实际应用范
分子和离子探针被广泛应用于科研、生产和生活。与传统的仪器检测相比,分子(离子)探针具有价格低廉、反应迅速和实时原位监测等优势。因此,分子(离子)探针的设计和合成是极其重要的工作。本论文设计并合成了新型手性配体(2R,3R)-2,3-二(4-吡啶甲酰氧基)丁二酸二苄酯[(R,R)-L]和(2S,3S)-2,3-二(4-吡啶甲酰氧基)丁二酸二苄酯[(S,S)-L],利用它们与金属盐进行自组装得到了14
含氮杂环化合物在核酸、蛋白质、天然产物及人工合成的生物活性分子中广泛存在,在人类生活的许多方面发挥着重要作用。因此,简单、快捷、高效地合成杂环化合物一直是有机化学家持续研究的重要方向之一。本论文从简单易得的原料出发,利用内博重排反应(Neber rearrangement)、环加成反应、氧化脱芳构-环加成-重排串联反应、以及Diels-Alder反应合成了一系列含氮杂环化合物,具体内容包含以下四个
多重特异性响应荧光分子的设计合成一直是智能传感研究领域的热点和难点。相较传统荧光分子的聚集荧光猝灭(ACQ)效应,聚集诱导发光(AIE)为构建“光开关”功能型传感分子提供了新思路,已成为引领当前智能荧光材料发展的重要研究前沿。点击化学是一种重要的模块化合成工具,其中,一价铜催化的“叠氮-端炔”间的1,3-偶极环加成反应以其高效快速和立体专一性等优点而备受青睐。在传感领域,点击化学作为一种桥联手段已
过渡金属氧化物纳米结构因其优异的物理化学性能被广泛地应用于催化、电子、光电等重要领域。但是过渡金属氧化物也存在着带隙较宽、导电性差、活性较低等缺点。研究者通常利用原子掺杂、引入氧空位或者构筑复合材料等手段调控过渡金属氧化物的电子结构,提高催化活性,从而拓展过渡金属氧化物的应用范围。但材料的形貌、尺寸以及宏观堆积状态等在转化中经常发生改变,难以研究材料单一变量对性能的影响。因此,在维持材料维数、尺寸
富勒烯(C60)被发现以来,其独特的结构和性质,引起了人们的广泛关注,富勒烯的碳笼内可以嵌入不同的原子、分子或者原子簇而形成内嵌富勒烯。常规的空心富勒烯是由五元环和六元环组成的封闭的多面体结构,所有的五元环都被六元环所隔离;而内嵌富勒烯中,由于碳笼和内嵌物质之间发生电荷转移,具有相邻五元环的碳笼可以稳定存在。除此之外,内嵌物质的存在及其与碳笼的相互作用,可以使内嵌富勒烯具有异于空心富勒烯的性质,包