【摘 要】
:
当今社会对超级电容器、锂离子电池等电化学储能器件的需求日益增长。三维碳网络纳米材料因具有高比表面积、高导电性和高离子传输效率等优势,成为了高性能电极材料的研究热点。目前,传统方法合成的三维碳纳米材料存在结构不可控、工艺复杂等问题,导致其应用受限。因此,实现三维碳材料绿色、可控制备,并揭示其电化学储能机理,对于推动其在储能领域的应用具有重要意义。本论文以水溶盐作为模板,结合冷冻干燥、高温碳化等工艺,
论文部分内容阅读
当今社会对超级电容器、锂离子电池等电化学储能器件的需求日益增长。三维碳网络纳米材料因具有高比表面积、高导电性和高离子传输效率等优势,成为了高性能电极材料的研究热点。目前,传统方法合成的三维碳纳米材料存在结构不可控、工艺复杂等问题,导致其应用受限。因此,实现三维碳材料绿色、可控制备,并揭示其电化学储能机理,对于推动其在储能领域的应用具有重要意义。本论文以水溶盐作为模板,结合冷冻干燥、高温碳化等工艺,制备了高比表面积、孔结构可控的三维碳网络基材料,系统研究了其作为锂离子电池负极和超级电容器电极材料的电化
其他文献
马铃薯(Solanum tuberosum L.)是重要的粮菜兼用型作物,不同品种常温下具有30-150 d不等的休眠期,休眠过后则自行发芽。不合时宜的发芽会降低商品薯价值和种薯质量,每年因贮藏不当造成大量损失。对块茎休眠和萌芽的合理调控是马铃薯产业中急需要解决的重要问题。本试验首先筛选能延长块茎贮藏期的新型挥发性抑芽物质,并利用RNA-Seq测序技术研究块茎休眠解除过程中的基因表达变化以及抑芽物
Photovoltaic power generation and transmission systems are sensitive to irregular and uncontrolled weather changes.PV power generation and transmission are highly dependent upon the weather parameters
雄性不育为农业生产上异花授粉供了极大的便利,控制相关作物的雄性生殖发育对农业生产育种至关重要。水稻(Oryza sativa L.)是全球最重要的粮食作物之一,在我国有着丰富的稻种资源。“三系法”和“两系法”杂交水稻的大规模应用表明水稻的生殖发育与粮食产量有着密切的关系。水稻雄性不育材料为杂种优势利用供了重要途径和种质资源。为了深入研究水稻生殖发育过程的内部发育机理以及外在作用机制,我们对水稻雄性
大豆花叶病毒(soybean mosaic virus,SMV)是在世界范围内严重影响大豆产量和品质的病害之一。一直以来,培育和种植抗性大豆品种被认为是对抗SMV的有效策略。因此,精细定位大豆中的抗SMV基因,进而调查抗性基因在不同品种中的差异,探究其功能演化机制不仅具有重要的科学研究价值,同时也具备重要的生产应用价值。1、PI 96983中抗SMV基因的精细定位以抗SMV大豆品种PI 96983
玉米是我国第一大粮食作物,是粮、经、饲兼用的作物,也是耗水量较多的农作物,特别是在干旱和半干旱地区,干旱是限制玉米产量的最为重要的因素之一,如何有效提升玉米的抗旱能力一直是科研工作的热点。褪黑素(melatonin,MT)是一种高效低毒生长调节剂,能够促进植物种子萌发、增强根的再生能力、延缓植物叶片衰老、提高植物对非生物逆境胁迫的抵抗能力。本课题以“玉米郑单958”为材料,使用浓度为20%的聚乙二
反应堆压力容器(Reactor pressure vessel,简称RPV)作为核电站一回路中“不可更换的”关键性部件,在长时间的运行过程中会遭受到高温、高压和中子辐照的影响。到目前为止,我国的第一代核电站(秦山核电站和大亚湾核电站)均已经运行了20多年。其运行时间越来越接近它们的设计寿期。如何将核电站的寿命延长至60年或更长时间(80年)已成为我国乃至世界核电工程领域最现实的问题之一。核电站寿期
随着广域量测系统(WAMS)的发展,使用远方反馈信号可以有效阻尼区间低频振荡,但由此带来的远方反馈信号传输时滞成为影响控制器效果甚至系统稳定的主要原因,也是大规模电网动态安全稳定分析和控制不可避免的一个关键问题,现有处理时滞的方法不能给出显含时滞取值的控制律及参数取值公式。有文献指出在设计广域时滞阻尼控制器的过程中,基于与具体时滞取值相关的理论所设计的控制器的效果要优于对时滞鲁棒的控制器,因此设计
开关磁阻电机(Switched reluctance motor,SRM)以结构简单、能量利用效率高、成本低等优点,目前已在纺织、冶金、家电等多个领域应用。由于SRM独特的双凸极结构和磁饱和特性,相比其它类型电机,SRM的径向电磁力大,振动噪声问题突出。SRM的定子绕组通电后,产生的电磁转矩趋于把转子拉到磁阻最小位置,同时形成径向电磁吸力,定子壳体在径向电磁力作用下产生振动和噪声。因此,研究径向振
负荷用电细节监测能够获取电力用户内部每个(主要)电器实时的用电信息。它属于智能电网的高级量测体系技术领域,处于电网的需求侧配、用电结合部,工程意义重大。非侵入式电力负荷监测(NILM)仅通过分析负荷总量数据便可实现负荷用电细节监测,具有成本低、实施容易、可靠性高和用户易接受等优点。针对既定陌生场景,自主NILM依据关于电器运行特性的先验知识,能够在不侵入负荷内部获取单个电器用电数据或开展负荷组成调
电力电子装置广泛应用于国民经济和国防建设的诸多领域,尤其电力电子装置构成的各种独立电力系统日趋普及。电力电子装置工作在高电压、大电流和高功率高频环境下,其电力电子器件通断瞬间产生很高的电压变化率和电流变化率,伴随电路中的寄生参数形成高频干扰源,产生严重的电磁干扰EMI(Electromagnetic Interference)。电磁干扰造成输入输出电流畸变、功率因数下降、效率降低,甚至损坏设备。其