基于数据挖掘的上市公司财务困境预警研究

来源 :武汉理工大学 | 被引量 : 0次 | 上传用户:xiang43
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The article systematically analyzed the actuality and various quantitative analyses methods of Chinese listed corporations’ financial distress. At present, domestic and overseas scholars have researched the reason and discussed the reason of this problem appeared and the method how to resolve. At the same time, the development of statistics, mathmatics and Artificial Intelligence has made it possible that apply the compositive data mining theory to this field. This article generally analyzed the existing financial crisis forwarning models, and established two forewarning models using Enterprise Miner module in SAS.The models in this article possessed includes Logistic models and Neural Network model possessed many advantages and obtained perfect forewarning effects.Part of the introduction of Chapter one of this artical explained the concept of financial distress, and defined the company that is at financial crisis as "ST" company. At last, this part discussed the studying purpose, meaning of this subject. The research emphases and research path were also explained.Chapter two studied mainly the relative theory of financial distress. First, this part pointed out that applying the quantitative analysis’s methods to financial analysis fields has become an important research method, but the limitation also existed. Then, studying actuality both at home and abroad were reviewed and analyed. This part also compared the existing models based on traditional statistic methods and discussed the existent limitation. Based on above, the idea was put forward that with the development of computer science and artificial intelligence, more compositive data mining theories and methods would be increasingly applied to the research on financial distress.Chapter three explained the basic theory of data mining, included conception, categories and major purpose. The process model of data mining was the keystone of the part. The SEMMA model was discussed which provided a technical implement measure for the process of data mining.Chapter four discussed the major methods of data mining. The traditional statistic methods such as Logistic regression analysis and the rising Artifical Intelligence methods such BP Neural Network were introduced. How to apply these theories to financial distress forewarning purpose was also introduced.Chapter five was an empirical study. Based on the SEMMA model, the chaptermade use of financial data of Chinese listed corporations and Enterprise minermodule in SAS to realized those arithmetics.Chapter six reviewed the artical’s major viewpoint, achievement and limitation. The expectation for the future research was also put forward.
其他文献
气/液两相流是自然界和工业过程中一种非常典型、复杂的多相流形态,其中离散相如气泡的运动速度、尺寸、位置等参数的检测是一个非常重要的测量研究课题。本论文探索了电容层
随着科学技术的发展,人们对智能的机器人的需求越来越紧迫,全自主足球机器人为机器人研究提供了一个良好平台。很明显,全自主足球机器人的驱动系统在整个机器人中起着重要的
随着互联网技术的发展,以太网逐渐被引入到工业控制领域,基于网络的控制系统结构日益普及,而网络带来的控制系统时滞问题对控制性能的影响不容忽视,因此本文以基于以太网的控
随着海洋工程的迅速崛起,油气开采越来越趋向于深海领域,半潜式钻井平台具有适应水深,钻井深,抗干扰能力强等优点,伴随我国深海战略的发展,对钻井平台定位系统的经济性以及定位能力
  本文针对国家“863”计划重大专项高性能宽带信息网“3Tnet”中流媒体服务器集群中的负载均衡需求,探讨了负载均衡技术,结合本系统的架构特点和对负载均衡系统的要求,提出
当前,制造业利用Internet在全球范围内进行资源集成,将技术、管理、人员实现最优组合已成为主要趋势,目的在于提高企业对不确定的急剧变化的市场的反应能力,最大程度满足顾客对产品个性化的需求,从而加强企业的竞争能力。而能对分散资源进行快速集成和优化组合的分布式制造模式,将成为新世纪企业发展方向。 分布式制造系统除了通过数据处理制定有关计划并根据运行情况对计划进行调整的功能之外,还在于可以对系
视觉伺服是机器视觉研究中的重要内容之一。它在国防、航天、和工业自动化等领域中具有非常重要的应用意义,如自动导航、目标跟踪、自动监控、机器人手-眼系统等都或多或少地与
本文针对现有神经网络自适应控制系统鲁棒性差的问题,以神经网络模型参考自适应控制系统为例,简述了外部干扰对神经网络模型参考自适应控制系统带来的不良影响,并着重分析了
随着全球经济的发展,汽车的普及率大幅度提高,城市交通问题也日益严重。目前世界各国都在大力发展智能交通系统(ITS),以实现城市道路交通的智能化、科学化管理,创造出可持续发展
货车运行故障动态检测系统(TFDS)是一套旨在提高列检效率和列检质量的货车安全检测系统。该系统自2001年研制以来,逐渐取代人工现场检测,目前采用人机结合的工作模式,降低了劳动强