论文部分内容阅读
配网自动化中重要的核心部分——馈线自动化,具有很强的工程应用背景和巨大的市场潜力。在电力行业里,最为重要的就是时间,因为电能无法储存,故其生产、输送、分配和消费都必须在同一时间内完成,本文就以这个为出发点,以满足电力用户越来越高的用电需要为目的展开的研究。本文在传统配网模型的基础上,将配网图形加以简化,并结合目前使用最多的分层拓扑模型形成现代的配电网拓扑模型,该模型不仅可以将配电网络完整的表示出来,而且非常易于计算及存储。本文以故障定位的快速性、实时性为主要考虑因素,选定矩阵算法及过热弧搜寻算法作为故障定位的基础算法,针对这两种算法的低容错性及对包含T接点区域的不确定性进行了改进。通过将耦合点纳入网络描述矩阵,并与故障信息丢失节点进行区分,分别判断处理并研究出了一种新的矩阵算法判定准则以解决上述问题;对于过热弧搜索算法是把对过热弧的搜寻转变成对过热区域的搜索,并给出了过热区域的详细搜寻步骤;同时对馈线测控终端上传故障信息不完备或错误的情况给出了相应对策,即在进行故障定位前先对接收到的原始故障信息进行组合纠错,再将纠错完成后的高正确性故障信息,组成新的故障信息序列,作为算法的输入数据。最后将两种改进后的算法结合使用,形成了本文的故障定位算法——新型图论类故障定位算法。完成对配电网的故障定位、隔离后,紧接着要进行非故障区域的恢复。本文选取以降低网损和均衡负荷为目标函数进行重构,采用前推回代法计算网络潮流。配网的重构算法选用蚁群算法,针对蚁群算法收敛速度慢、计算时间过长的现象,研究出了一种基于配网重构的人工蚁群算法,算法中构造了解元件库以及预防出现不可行解的“预防”算子和“修正”算子,“预防”算子引入了一种候选集平衡策略,“修正”算子用以加快算法从不可行区域的逃离。仿真结果表明该算法在解决了上述问题的基础上有效地维持了搜索空间探索与开采的平衡,提高了算法性能。这样就完整的对馈线自动化功能进行了分析和研究,最后通过两个具有代表性的实例对论文中的算法一一进行仿真分析,由仿真结果得出本文算法的正确性、可行性及优越性。