论文部分内容阅读
信息科学的研究涉及数据处理的各个方面,相关的工作促进了方向的产生,成果的出现推进了学科的发展。作为信息科学的研究课题或研究方向,数据分类、数据约简、数据仓储、数据筛选、数据挖掘、数据推演等针对数据处理的课题既表明了研究领域的宽泛与活跃,也蕴含了理论和应用相结合的研究理念。不同的工作虽各有侧重,但常常涉及共同的研究层面。就数据问题而言,不明确、非确定、似存在或潜存于数据之间的数据联系与这些方向无不相关,同时又在实际当中频繁出现,从而引出了粗糙数据联系的概念。对此的思考和关注促成了粗糙数据推理课题的产生,较少的涉足预示着研究的意义和前沿,加之理论研究将提供算法构建的依据以及程序设计的基础。因此本文聚焦于粗糙数据推理课题的研究,完成的工作集中于如下几个方面:对粗糙集依托的近似空间进行了结构上的扩充,引入了推理关系,产生了粗糙数据推理得以实施的依托环境—粗糙推理空间。为对粗糙数据联系进行描述,在粗糙推理空间中,通过等价关系与推理关系融合信息的上近似,引出了粗糙数据推理的定义,使推理运作于数据之间,产生了课题研究的主题。经对粗糙数据推理的研究,获得了相关的结论,展示了粗糙数据推理的性质,包括:粗糙数据推理保持确定数据联系的特性,粗糙数据推理与上近似中近似信息密切相关的特性,粗糙数据推理具有近似描述功能的特性,粗糙数据推理与路径相互等价的特性,粗糙数据推理对应不同等价关系的特性等。构建了实际问题的粗糙推理空间,描述了汽车制造产业链上企业以不同方式的分类,以及企业之间供货链的确定信息。在该空间中,粗糙数据推理的推演刻画了企业之间潜在供货渠道的粗糙数据联系,提供了智能处理和自动管理的参阅信息,使粗糙数据推理的理论方法在实际中得到了的应用。讨论了特殊的粗糙推理空间—树型推理空间中的粗糙数据推理,展示了以树作为推理关系的特点。在树型推理空间中,利用树包含的层次信息,证明了以树作为推理关系的重要结论:粗糙数据推理的推演依赖于数据位于的层次。由此通过对树型推理空间的细化,展示了细化粗糙数据推理更趋于精确信息的推理特性。同时细化粗糙数据推理的结论可用于汽车制造产业链上供货依赖关系的分析,使理论方法进一步得到了应用。在粗糙推理推理空间中给出了粗糙路径的概念,证明了粗糙路径与粗糙数据推理之间的相互对应联系,从而使粗糙路径用于了粗糙数据推理内涵精度的描述,由此区分了相同形式粗糙数据推理的相异内涵,形成了对粗糙数据联系松散或紧密程度的辨别方法,对于实际应用具有指导性的作用。通过结构化的粒化树构建,并利用粒化树中的层次信息,给出了数据关联的定义,产生了粗糙数据推理的关联推理方法。该方法以关联数据作为桥梁,结合数据的等同、等同的更接近、数据关联的形式、关联情况的数值表示、关联程度的极大性处理等,使两数据类中的数据建立起了关联关系,并以上近似的特定运算作为数据关联判定的充要条件。该方法的特点体现了对粒化树中粒的层次和粒度变化的应用,以及对数据关联和关联程度数值表示的处理。同时讨论与实际问题密切相关,基于粒化树的数据关联方法用于了具体问题的描述,实现了理论联系于实际的研究预期。上述工作以粗糙数据推理作为研究的主体,以数据关联推理作为研究的部分。探究步骤循序渐进,研究细节追求清晰、问题分析逐步推进、整体讨论围绕主题。这些工作包含了课题研究的自身方法,体现了对粗糙数据推理课题与数据关联现象的理解与认识,形成了程序设计的算法基础。同时针对实际问题的模型刻画和实际数据联系的粗糙数据推理描述,展示了理论方法源于实际,实际应用基于理论的研究目的。