论文部分内容阅读
在力争早日实现碳达峰和碳中和并彻底解决能源问题的大背景下,通过模拟自然光合作用过程构建高效稳定的人工光合作用体系无疑是解决上述问题最有前途的策略之一。金属卤化钙钛矿(MHPs)纳米晶材料以其合适可调的能带结构、优异的光电性能以及简便的制备工艺逐渐得到科研人员的广泛关注。然而,随着MHPs初步应用到人工光合作用领域,其表面缺乏催化活性位点、光生载流子分离相对不足以及催化稳定性不佳等导致低催化活性的问题也初露端倪。围绕以上问题,本论文有针对性地提出了疏水配体表面修饰、过渡金属功能化掺杂、Z-型异质结设计、形貌调控以及富表面缺陷等策略改善MHPs纳米晶材料的光催化活性。主要包括以下四个部分:(1)针对MHPs材料在含水体系中的稳定性差这一问题,我们首先以短链疏水性分子七氟丁基丙烯酸酯为配体制备出在纯水体系中具有良好稳定性的CsPbBr3/Cs4PbBr6复合纳米晶;并通过直接对该纳米晶表面进行金属离子掺杂来克服光生电子与催化位点之间电子转移受限的问题,在国际上首次实现在纯水体系中MHPs纳米晶高效光催化CO2还原。研究表明基于直接表面金属离子掺杂的策略不仅有效增加了光催化反应的活性位点,MHPs纳米晶中的光生载流子与催化活性位点之间的电子转移距离也大大缩短,电荷分离效率得到显著提升。进一步研究表明该表面掺杂的策略对提升MHPs纳米晶材料光催化剂的活性具有良好的普适性。(2)考虑到MHPs较差的水氧化能力,我们以超薄小尺寸氧化石墨烯(USGO)纳米片作为载体和电子导体,通过简单的静电自组装法将CsPbBr3纳米晶和传统水氧化半导体(α-Fe2O3)有机的结合,构建了一种高效的CsPbBr3基全固态Z-型异质结催化剂CsPbBr3/USGO/α-Fe2O3。高分辨TEM和XPS测试发现CsPbBr3和α-Fe2O3分别以成键的方式紧密锚定在USGO纳米片上。USGO纳米片优异的电子传输性能赋予了CsPbBr3/USGO/α-Fe2O3高效的界面电荷分离能力。进一步利用原位光下XPS测试证实其界面电荷转移路径符合Z-型异质结模式。以水作为电子源,基于CsPbBr3/USGO/α-Fe2O3异质结的光催化CO2还原活性显著增强,其电子消耗速率达到147.6μmol g-1 h-1,比单独的CsPbBr3纳米晶高19倍。(3)考虑到电子导体的引入会造成一定的光屏蔽效应,我们进一步基于“溶剂辅助、原位生长”的策略在α-Fe2O3纳米棒表面生长了一种无配体的MHPs纳米晶(LF-FAPbBr3),构建了直接Z-型异质结LF-FAPbBr3/α-Fe2O3。LF-FAPbBr3纳米晶与α-Fe2O3纳米棒之间无配体阻碍的直接接触促进了二者之间的强界面电子耦合。这种强界面电子耦合促进了LF-FAPbBr3纳米晶与α-Fe2O3之间的高效界面电荷转移以及各自内部的电荷分离,电荷分离效率高达93%,远高于含有配体封端的FAPbBr3和α-Fe2O3复合物(L-FAPbBr3/α-Fe2O3)的11%。基于LF-FAPbBr3/α-Fe2O3异质结,光催化CO2还原的电子消耗速率达到175mmol g-1 h-1,比表面包裹有机配体的L-FAPbBr3高16倍。(4)利用无配体籽晶辅助生长策略合成了一种新型3D朱樱花状CsPbBr3纳米花(LF-CPB NFs)。基于这种策略制备的纳米级LF-CPB NFs不仅具有较大的比表面,而且其表面因无有机配体钝化而产生大量的表面Br空位缺陷。这些缺陷可以捕获光生载流子,并起到催化活性中心的作用,弥补了传统MHPs纳米晶表面缺乏催化位点的不足。LF-CPB NFs形貌的各向异性还可以使光生载流子进一步有效解离。LF-CPB NFs光催化CO2还原的电子消耗速率比传统有机配体封端的CsPbBr3纳米晶(L-CPB NCs)高7倍以上,比块状CsPbBr3性能高20倍。此外,由于无有机绝缘配体的存在,LF-CPB NFs与助催化剂TCPP(Fe)可以紧密接触,显著提高其界面电荷转移速率,进一步改善光催化活性。其中,LF-CPB-2 NFs/TCPP(Fe)复合物光催化CO2还原的电子消耗速率比L-CPB NCs/TCPP(Fe)提高了14倍以上。