论文部分内容阅读
随着大规模工程建设的开展,在各种建设领域越来越多的出现了高陡边坡,而这些边坡又往往成为制约工程是否经济合理乃至成败的重要因素。因此,如何经济、安全可靠地设计合理的边坡工程或分析评价天然边坡的稳定性,其重大意义越发显得突出。 论文在综述边坡稳定性评价方法的基础之上,将人工神经网络RBF模型应用于边坡稳定性影响因素敏感性分析之中;并且将人工神经网络BP模型与模糊理论相结合,应用于边坡稳定性评价。其目的旨在充分利用人工神经网络具有的自学习、自适应、自组织和非线形动力学特性以及利用模糊理论具有的不确定性分析、多因素分析等特点,建立边坡稳定性的智能评估模型。 论文介绍了边坡工程研究的意义,并就边坡工程研究存在的问题及发展方向进行了简单的讨论;介绍了人工神经网络BP模型结构、学习算法和人工神经网络RBF模型的结构、学习算法,同时简要介绍了模糊数学理论的指标确定、指标等级、隶属函数等内容。把正交表试验设计理论、效用函数理论与神经网络结合起来进行边坡稳定性影响因素敏感性的人工神经网络分析,并建立了敏感性分析的神经网络评价模型。通过试验将其结果与用传统极限平衡分析理论所得结果进行比较,证明本文所提出方法的正确性和方便性。在边坡稳定性评价中将模糊理论与人工神经网络技术相结合,建立了边坡稳定性的模糊神经网络评价模型,并用实例验证了该评价模型的适用性和正确性,为边坡稳定性评估提供了一种新方法。