论文部分内容阅读
微波频率梳(MFC)指的是一组由具有相同频率间隔的频率分量组成的频率成分。基于MFC可以提供多频带微波信号的特点,因此它在全光频率转换,频率距离计量,光纤无线电通信(radio-over-fiber,RoF),以及传感器等领域都有着广泛的应用。而探索可调谐超宽带的优质MFC的产生无论从学术还是应用层面均具有很重要的意义。MFC可以通过电学方法或光学方法产生,传统的电学方法是利用变容二极管、阶跃恢复二极管、晶体三极管的等非线性元件的特殊性能,通过倍频方式来产生。但由于受所用元件电子带宽的限制,产生的MFC带宽很小且高次谐波频率成分急剧减小。而光学方法获取MFC主要有三种:一是利用激光扫描隧道显微镜的隧道结方式获取;二是利用光电探测器(PD)去转换光学频率梳的方式获取;三是半导体激光器(SL)在合适的外部扰动下呈现的非线性动力学态获取。由于前两种方式获取的MFC具有带宽小,且梳距不易调节等缺陷,因此第三种方法基于其能产生超带宽的优质MFC优点而获得了更多人的关注。其中,利用光电反馈SL呈现的次谐波锁定产生的MFC梳线信号功率不均衡、带宽较小、梳距不能灵活调节等缺陷。因此为了更好满足现代通信技术发展的需要,有必要探索获得功率均衡、梳距均匀可调节、频率稳定的超宽带优质MFC信号的方法。其中,通过电流调制半导体激光器呈现的非线性动力学态获取的MFC能很好的解决带宽以及可调谐性等方面的问题。本文提出了一种电流调制分布反馈式半导体激光器(DFB-SL1)产生的规则脉冲注入到另一个分布反馈式半导体激光器(DFB-SL2)获取可调谐超宽带MFC的实现方案,并对其性能进行了相关的数值研究。该方案首先采用一个外部的交流信号去调制分布反馈式半导体激光器(DFB-SL1)的偏置电流,在适当的调制参数下驱使该激光器输出频率间隔可调谐的规则脉冲信号。该信号可作为获取超宽带MFC的微波信号种子源;在此基础上,将该规则脉冲信号注入到另一个分布反馈式半导体激光器(DFB-SL2)中获取具有超宽带和频率间隔可调谐的优化MFC。研究结果表明:对于带宽为26.4 GHz且频率间隔为3.3 GHz的种子MFC,通过选取合适的注入参数DFB-SL2生成的优化MFC的带宽可达到72.6 GHz。同时,本文也进一步分析了优化的MFC带宽随频率失谐和注入系数的变化。