【摘 要】
:
在地震或者较大活荷载作用下,管节点可能已经产生较大的塑性变形和一定程度的损伤,最后可能导致结构的整体破坏。因此,对损伤的在役管结构进行节点加固就尤为必要。在众多加固方法中,环口板加固法成本较低且使用方便,本文选取使用环口板加固管节点的方法进行研究。本文挑选试验构件进行有限元模拟,从而验证有限元模拟得到的数据可以用来研究不同损伤程度对环口板加固管节点承载能力的影响。在Abaqus中,模型全部采用实体
论文部分内容阅读
在地震或者较大活荷载作用下,管节点可能已经产生较大的塑性变形和一定程度的损伤,最后可能导致结构的整体破坏。因此,对损伤的在役管结构进行节点加固就尤为必要。在众多加固方法中,环口板加固法成本较低且使用方便,本文选取使用环口板加固管节点的方法进行研究。本文挑选试验构件进行有限元模拟,从而验证有限元模拟得到的数据可以用来研究不同损伤程度对环口板加固管节点承载能力的影响。在Abaqus中,模型全部采用实体单元进行建立,管节点的损伤准则采取B-W损伤准则,按照损伤准则添加了损伤参数。有限元分析得到的峰值荷载结果与试验结果相差约3%。认为在Abaqus中所采用的损伤模型、破坏准则、本构模型适用于不同损伤程度下环口板加固T型管节点承载能力的研究。根据有限元模拟结果与试验结果的对比,确定了有限元模拟得到的结果是可靠的。对52个模型进行了有限元模拟,进一步研究了预损程度、环口板尺寸、主管管径、主管壁厚对环口板加固受荷状态下T型管节点承载能力的影响。得出结论:环口板尺寸在85mm到130mm、预损程度为53%Δm到200%Δm范围内,环口板尺寸越大,使用环口板加固预损试件的极限承载力提高约22%-57%;主管管径在120mm到194mm、预损程度为53%Δm到200%Δm范围内,主管管径越小,使用环口板加固预损试件的极限承载力提高约12%-120%;主管管壁厚度在4mm到10mm、预损程度为53%Δm到200%Δm范围内,主管壁厚越大,使用环口板加固预损试件的极限承载力提高约19%—78%;在相同条件下,试件预损程度为53%Δm到200%Δm范围内时,预损程度越大,使用环口板加固试件提高的承载力越小;并且在预损后再进行加固的试件,极限承载力比直接加固试件的极限承载力小7%—40%。为研究管节点的塑性发展状况,分别在模型9个位置处取9个测点,分析在不同荷载作用下试件等效塑性应变的变化。观察得到,在塑性铰区域内的测点数值变化较大,距离塑性铰区域越远的位置等效塑性应变数值变化越小。对比不同预损程度下模型的等效塑性应变的情况,得出结论:在受损后使用环口板加固模型仍然表现出很好的加固效果;在试件损伤程度为53%Δm时候使用环口板加固试件,试件极限承载力可以提高约57%。最后,在53%Δm到200%Δm范围内,在环口板加固T型圆钢管节点在轴向压力作用下的受压承载力公式的基础上,提出损伤修正系数ζ。从而指导预测在损伤范围内T型管节点在不同损伤程度下极限承载力的大小。
其他文献
农业物联网技术对于现代化农业至关重要。对于农业工程野外场景,信息获取难度大,常规方法工作量大且很难实现,如实地采取样本。而物联网核心技术——无线传感器网络(WSN),利用自组网方式进行信息获取,非常适合农业工程领域。不但有效避免复杂农业工程环境监测布线安装上的难度,而且网络低功耗自组,信息传递准确,在精准农业信息智能获取方面有特有的优势。针对传统的农业工程中信息的获取,通常采用野外实地取样,困难且
背景:胰腺癌是一种极其凶险的恶性肿瘤,其临床早期确诊率低、进展迅速、预后极差。胰腺癌一般是由胰腺癌前病变进展而来,目前国际上公认的胰腺癌前病变包括:胰腺上皮内瘤变、
迅速的工业化导致了严重的空气污染问题,PM2.5颗粒作为城市空气质量监测的典型指标,已引起人们的广泛关注。到目前为止,通过机理机制进行检测的方法建模复杂,基于遥感的模型检测效果不稳定又缺乏灵活性,难以完成PM2.5浓度的细粒度检测。为了解决这类问题,本文提出了一系列用于提高PM2.5细粒度检测准确性和灵活性的解决方案,主要贡献如下:(1)设计了一种通过移动群智进行PM2.5细粒度检测的框架。该框架
Ⅱ型糖尿病占糖尿病病例总数的90%,影响全世界3亿多人,人胰岛淀粉样蛋白(Amylin)在疾病的发展过程中起到关键作用。Amylin的错误折叠形成的聚集体对能对合成胰岛素的胰岛细胞
深紫外非线性光学(deep-UV NLO)晶体的开发与利用是当前非线性光学领域的一个研究热点。Deep-UV NLO晶体通过激光频率转换可实现全谱的激光输出,以弥补当前激光器无法达到的深紫外区(<200 nm),其所制备的器件可以极大地提高国土安全威胁探测能力和精密测量能力。其中,非中心对称晶体结构(NCS)是成为NLO晶体的首要条件。但是目前NCS化合物的数量远远少于中心对称晶体结构化合物
结晶在化工生产中诸如精细化学品和制药行业,作为分离纯化的手段和提高生产效率目标等均占有重要的地位。尤其是在制药行业中,间歇冷却结晶可以有效控制晶体产品的粒度和晶形
移动通信技术自出现开始,经历了模拟讯号传输(1G)、数字调制传输GSM(2G)、蜂窝移动通讯技术(3G)、第四代数字蜂窝移动通信技术(4G)。而现如今,万物互联的5G技术已经开始商用,它将突破4G移动通信技术的桎梏,突破时空限制,给用户带来身临其境的信息盛宴。然而,5G技术的发展,不可避免的要面临系统容量以及网络干扰所带来的各种问题,而这两个问题也正是制约5G技术进一步向前发展的关键因素。本文主要
高效视频编码(High Efficiency Video Coding,HEVC)是目前最新的视频编码标准,继承自H.264/AVC,通过引入新的技术,使得在保持良好视频质量前提下进一步提高编码效率。相对于H.264标准,HEVC在帧间预测模块采用了新的合并(Merge)模式、增加了灵活的块划分以及更合理的子像素插值算法,编码的性能也有所提高,但是编码的计算复杂度随之增加。因此,在保证编码效率的前
在核磁共振实验中,样品所受的射频(RF)激励电磁场包括磁场B1和电场E1。共振效应通常指的是振荡B1场产生的扰动,而射频场中的电场E1分量对样品的激发不起作用。电场是RF激发产生热量的主要原因之一。在高场核磁实验中,RF频率高,功率大,一些实验采用长脉冲和多脉冲的复杂脉冲序列。另一些实验往往需要累加上千次采样,射频脉冲的持续激发将在样品上产生大量的热量,致使样品的实际温度升高。这不仅将产生检测的误
在红外成像系统中,红外焦平面探测器是成像质量好坏的首要因素。然而,由于制作工艺和材料的特性,导致在整个焦平面上每个像素点对相同的温度表现出灰度响应不一致,在得到的成像图像上表现为斑块状的低频非均匀性和条纹状的高频非均匀性,即固定图案噪声。此外,由于探测器工作过程中随着时间变长,周围温度发生漂移导致探测器的响应也会随之发生改变,为了弥补这些不足,许多基于场景的NUC(SBNUC)技术被提出,在一定程