论文部分内容阅读
针对我国油田的多层系、非均质构造,国内各油田大多采用注水开发方式来提高采收率,但同时也造成了各油层间存在较大的物性差异,导致了严重的层间干扰问题。为解决这一问题而研制开发了一种新型的采油设备,即双作用分层抽油系统。目前该系统在一些油田已投入使用。现有的采油系统领域的故障诊断技术难以满足对该系统进行故障诊断的需要,国内外也没有这方面的研究报导。人工神经网络是近几年迅速发展的热点和前沿问题之一,同传统的专家系统相比,神经网络专家系统在知识获取、并行处理、适应性学习、容错能力等方面都具有明显的优越性,这在一定程度上满足了对复杂、非平稳、有干扰的抽油系统的井下示功图进行识别的要求。 目前应用的若干神经网络模型中,BP网络模型是人们认识最早应用最广泛的一种,它也是在设备故障诊断领域应用最成功的一种神经网络模型。本文简要论述了BP算法,在总结了其缺点和不足的基础上,用改进的BP动量算法建立神经网络专家系统。 双作用抽油泵是适应分层开采的一种新式抽油泵,文章在简要论述双作用抽油泵的结构及工作原理的基础上重点对双作用分层抽油系统的力学特性进行分析,建立预测模型,利用显示差分法求解,得到抽油杆柱各个截面上的受力状态,特别是光杆处的位移和载荷随时间的变化规律,并绘出任意截面的示功图。这将为对整个抽油系统进行静态和动态特性分析,进而为系统参数合理选择、各部件优化设计和设备的故障诊断奠定基础。文中结合常规有杆抽油系统的故障图谱加上作者通过计算、模拟等手段构造出双作用分层抽油系统部分故障图谱,此图谱作为样本输入集可用于神经网络模型的建立。本文还提出了一种基于MATLAB语言工具箱的示功图的预处理方法及双作用分层抽油系统井下故障诊断专家系统的总体方案,并分别对各个模块的功能及其整个系统的运行机制进行了论述,系统地阐明了神经网络诊断模块的初始化、训练和测试过程。借助MATLAB语言系统及其工具箱完成了故障诊断专家系统软件的设计,并用试验井的实测示功图对其诊断结果的正确性进行了测试。本文所开发的故障诊断专家系统软件解决了分层采油系统的故障诊断问题,有利于双作用分层抽油系统的推广应用,对分层采油技术有较重要的意义。