火焰合成纳米ZnFe2O4用于易燃液体蒸汽浓度检测性能研究

来源 :南京理工大学 | 被引量 : 0次 | 上传用户:trytry11
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
挥发性易燃液体作为液态化学材料在诸多领域得到了广泛的应用,主要包括煤化工、石油化工、燃料涂料制造等,在生产、储存以及加工过程中可能由于泄露等原因引起严重的安全事故,如中毒、起火和爆炸等,因此如何实现对挥发性易燃液体浓度的安全检测还有待进一步研究。金属氧化物半导体气体传感器由于成本低、操作简单、可检测气体种类繁多等优点,成为气体传感器的研究热点。但在实际应用过程中,仍然存在选择性不够强、灵敏度不够高等缺点。研究发现纳米结构化在改善材料气敏性能以及推动气体传感器小型化方面具有很大潜力,因此,本文采用预混滞止火焰合成技术制备纳米Zn Fe2O4,并通过大量实验探索火焰合成方法制备Zn Fe2O4时最佳的前驱物配比以及实验工况条件,从材料的微观形貌以及丰富缺陷态的角度提升多元金属氧化物气体传感器的敏感性能,如响应恢复速率、选择性、灵敏度等,为后续气体传感器对于挥发性易燃液体的安全检测提供实验依据。本文得出的结论如下:(1)预混滞止火焰合成方法能够成功制备Zn Fe2O4球形纳米颗粒,与常规化学合成方法相比,Zn Fe2O4产物相纯度更高且形貌均匀。球形颗粒粒径约为400~500nm,由大量颗粒尺寸在10nm左右的纳米颗粒组装而成。(2)确定了工况三为最佳实验条件,即O2/C2H4当量比为5.44,N2为9.82SLPM。Zn Fe2O4球形纳米材料表面具有极高的氧化特性且为多晶形态,比表面积为23m~2/g,表面存在大量4.5nm左右孔隙。(3)气敏测试结果显示火焰合成Zn Fe2O4球形组装纳米材料对于挥发性易燃液体如丙酮、乙醇、乙二醇以及甲醇均具有响应,尤其是对于丙酮具有良好的选择性以及灵敏度,且对丙酮的最佳工作温度为225℃。火焰合成以及化学合成Zn Fe2O4纳米材料对于100ppm丙酮蒸汽的响应度分别达到26/7,在循环测试过程中,响应恢复时间稳定在14s/8s、33s/20s。火焰合成制备气体传感器具有良好的稳定性,30天后Zn Fe2O4气体传感器的响应度仍能达到最初的92%。
其他文献
幂次非线性接触力模型在相对运动机械系统中广泛存在,而接触共振会带来严重的磨损、接触疲劳和振动噪声等问题,相关研究在宏观和微观尺度都属于热点问题。本文通过建立连续和单边接触两类幂次非线性系统,采用半数值半解析的谐波平衡-频/时转换(HB-AFT)方法结合Floquet稳定性理论,研究了典型的幂次连续系统、接触系统特别是滚动轴承变柔度(VC)振动系统的滞后共振及其复杂响应行为。1.深入分析了幂次、定常
由于传统被动悬架在性能上的局限性,能提高汽车的行驶平顺性和操纵稳定性的主动悬架技术代表着未来汽车悬架系统的发展方向。因此,为了更优质的驾乘体验,本文以该项技术为载体,设计了一套有效的主动悬架用直线作动器的伺服系统。首先,建立了四分之一汽车行驶动力学悬架模型,及连续和离散的路面扰动模型。并以悬架系统评价指标为优化变量,基于线性最优控制策略设计了主动悬架LQR控制器。利用某SUV车型前悬架参数,仿真验
炸药是一种在一定外界能量作用下,能够迅速发生化学反应,释放大量热量并生成气态产物,同时在周围介质中形成高压的物质。炸药的反应过程和速度可控、质量体积小、生产简单,故其在军事、工业、民用等领域均有着广泛应用。近年来,军民领域对炸药的性能提出了更高的要求,众多学者进行了提高炸药能量密度的探索。其一是对炸药的自身性质进行研究,包括炸药微纳米化、复合炸药研究、制备全氮化合物和金属氢等。其二是将外界能量与炸
等级孔沸石分子筛由于具有孔道结构多、传质阻力小、传输速率大等优点广泛应用于催化反应。目前,微孔SSZ-13是NH3 selective catalytic reduction(NH3-SCR)有效的商业催化剂,但存在扩散阻力大,高温下NH3氧化过度等问题。因而等级孔SSZ-13逐渐引起了人们的关注,确定多孔沸石中的介孔在NH3-SCR催化反应中的功能与作用至关重要。本论文采用双模板法,利用N,N,
目前工业生产中,检测金属铝产品缺陷一般都采用超声检测。但传统的激光超声波检测技术主要依靠耦合剂使超声波换能器与检测样品相耦合,如果检测样品形状复杂,就无法满足这种要求,所以使用传统的超声波检测方法有一定的局限性。激光超声作为一种非接触的超声检测方法,不需要耦合剂,并且可以胜任复杂面型的样品的检测。特别是激光超声并与合成孔径聚焦成像技术(Synthetic Aperture Focusing Tec
超级电容器是一种新型的电荷储存器件,其功率密度高、充放电速度快、使用寿命长。当前的研究挑战集中于能量密度、循环稳定性、机械性能的提高。导电聚合物具有成本低、环境稳定性好、电荷储存能力高、电压窗口宽等优点,是一类很有前途的超级电容器电极材料。但是这类材料存在实际比容量低、掺杂水平有限、倍率性能和循环稳定性差等问题。基于此,我们利用醌类分子、共价有机骨架(COFs)材料掺杂导电聚合物来改善储能能力。具
硝基酚类化合物的还原是制备各种染料、有机中间体的主要反应,该反应也可降低硝基酚化合物的毒性。但是,尽管该反应在热力学上属于自发反应,其动力学反应速率较为缓慢,因此须使用催化剂。负载型金属基纳米催化剂由于其催化性能优异引起了研究者的注意。常见的制备负载型金属基纳米催化剂的方法包括溶液还原法、金属有机框架热分解法等。本文另辟蹊径,通过课题组改进的溶胶-凝胶法合成碳负载型金属纳米材料并探究其催化还原4-
高速行进间射击是现代坦克增强作战能力的重要军事需求,提高行进间射击精度是坦克火控技术发展的重要方向,本论文以坦克行进间射击的误差分析为研究内容,分别从坦克行进速度对弹丸落点精度的影响以及行进间路面谱对坦克身管震动的影响两方面,对高速行进间坦克射击误差进行了分析,研究成果对提高坦克行进间的射击精度进行了有益的探索。首先,针对坦克行进间射击误差产生因素进行分析,以高速行进间射击解命中误差和身管随机振动
学位
学位