论文部分内容阅读
光纤传感器是一种新型传感器,经过几十年的研究和发展,光纤传感技术在理论和实验等方面已经日渐趋于成熟,其中干涉型光纤传感器由于其具有灵敏度高、制作成本低、可适应恶劣环境等优点,使得它在航天航空、医药、桥梁检测等领域有着广阔的应用前景。本文主要是在课题组前期研究工作的基础上,基于多模和球形结构设计制作新型的光纤传感器,并实现对外界参量:温度、折射率、磁场的测量。1、设计了一种基于多模光纤和球形结构级联的干涉型光纤传感结构,并对外界参量进行了测量,这种新型复合结构的透射谱是一系列干涉的叠加,测得两个干涉谷的温度灵敏度分别为0.053nm/℃,0.043 nm/℃;折射率灵敏度分别为-41.51nm/RIU,-59.19nm/RIU;磁场灵敏度分别为0.047nm/mT,0.077nm/mT。2、设计了一种基于偏芯结构与球形结构级联的干涉型光纤传感结构,并对外界参量进行了测量,该传感结构利用偏芯结构将入射光分为两部分,不仅激发高阶纤芯模式,而且激发了不同阶包层模式,再利用球形结构的耦合作用,产生不同模式之间的干涉。实验测得两个干涉谷的温度灵敏度分别为0.042nm/℃、0.059 nm/℃;折射率灵敏度分别为-46.12nm/RIU,-54.17 nm/RIU;磁场灵敏度分别为-0.187nm/mT,-0.11nm/mT。3、设计了一种基于少模光纤和球形结构级联的干涉型光纤传感结构,不同于多模光纤,少模光纤参与干涉的模式数量较少,且高阶模式能量比例较高,因此少模光纤较好的滤模作用可以实现对传感结构的优化。利用少模光纤特定高阶纤芯模式与不同阶包层模式之间的干涉形成的干涉谱,对外界参量进行了测量,温度灵敏度分别为0.059nm/℃,0.05nm/℃;折射率灵敏度分别为-39.15nm/RIU,-48.82nm/RIU;磁场灵敏度分别为-0.090nm/mT,-0.122nm/mT。