【摘 要】
:
聚合物基导电复合材料具有导电范围可控、密度小、易加工等优异特性,在抗静电、电磁屏蔽、导电密封材料等领域应用广泛。导电填料自组装法是聚合物基导电复合材料的主要制备方式,通过增加导电填料的体积分数至渗流阈值,导电粒子在聚合物基体内形成自组装导电网络,能够使复合材料获得较强的导电能力。但是,由于自组装网络的导电效率较低,仅依靠增加导电填料的体积分数难以获得高导电性能的复合材料。并且,导电填料含量过高还会
论文部分内容阅读
聚合物基导电复合材料具有导电范围可控、密度小、易加工等优异特性,在抗静电、电磁屏蔽、导电密封材料等领域应用广泛。导电填料自组装法是聚合物基导电复合材料的主要制备方式,通过增加导电填料的体积分数至渗流阈值,导电粒子在聚合物基体内形成自组装导电网络,能够使复合材料获得较强的导电能力。但是,由于自组装网络的导电效率较低,仅依靠增加导电填料的体积分数难以获得高导电性能的复合材料。并且,导电填料含量过高还会严重削弱复合材料的力学性能和可加工性。空间限域强制组装法(SCFNA法)能够通过机械手段,对聚合物-导电填料体系进行空间限域挤压和界面微纳米机械组装,从而对功能分散相施加远大于自组装作用力的“强制组装力”,将导电粒子间的聚合物强制“挤出”以获得密实的导电网络,为制备高导电性能的复合材料提供了可能。目前,SCFNA法制备导电复合材料主要是通过双平板热压印或注射压缩等加工工艺来实现的,存在生产不连续,制备效率较低等问题。为了实现在SCFNA法的基础上连续制备导电复合材料,本文将SCFNA法与连续辊压工艺相结合,提出了连续辊压-空间限域强制组装工艺(CRSCFNA)制备导电复合材料的新方法。使用低模量弹性辊连续辊压聚合物-导电填料体系,能够制备出任意长度的高导电性复合材料。同时,连续辊压还能够使导电填料朝辊压方向进行定向排列和取向,使复合材料在辊压方向上具有更好的导电性能和力学性能。本文的主要研究内容有:(1)根据SCFNA法制备导电复合材料的原理,建立了辊对板形式的CRSCFNA工艺模型,通过理论计算得出了连续辊压工艺实现导电填料强制组装的关键因素,研究了压辊材料的弹性模量对压印面积和材料厚度均匀性的影响规律以及辊压过程对填料取向的作用原理;设计了一套使用CRSCFNA工艺制备导电复合材料的实验装置,并对装置的主要结构件进行了优化和校核,确定了螺杆步数与辊压压力、接触面平均压强以及接触面压强分布的函数关系;(2)用CRSCFNA工艺制备PDMS/SCF导电复合材料,用控制变量的实验方法,研究了CRSCFNA工艺中的工艺参数对制品导电性能、材料厚度以及表面质量的影响规律,确定了适用于CRSCFNA装置制备PDMS/SCF导电复合材料的最优工艺参数;(3)用共混自组装法、SCFNA法和CRSCFNA工艺制备了PDMS/SCF导电复合材料,并对三种方式制备复合材料的导电性能、力学性能和复合材料的微观形貌进行了对比分析;使用CRSCFNA工艺制备了PDMS/SCF-Bolting Cloth导电复合材料,研究了筛网目数、筛网放置位置和辊压方式对复合材料的导电性能、力学性能以及填料分布影响;(4)提出了CRSCFNA工艺连续化制备PDMS/SCF导电复合材料的初步方案,设计并改进了辊压系统和热压固化系统的部分结构,通过模拟连续化制备PDMS/SCF导电复合材料,初步验证了CRSCFNA工艺在工业上连续化生产复合材料的可行性。
其他文献
锻造过程中,周期性的冷热载荷和机械载荷会使锻模表层出现过度磨损、开裂等非正常失效现象,不仅会增加企业生产成本、降低企业生产效率,还可能会威胁到员工的人身安全。本文以提高热锻模具寿命为目标,通过对钢质预锻活塞裙模具进行失效分析,确定了影响模具寿命的主要因素;基于“变形协调”及“膜-基一体化”理论,设计ZrTiN/TiAl N纳米多层梯度涂层,系统研究了弧源电流与基体偏压对所制备涂层性能的影响,通过分
纤维直接喂入注射成型技术(Direct Fiber Feeding Injection Molding,以下简称DFFIM)作为新兴的纤维增强热塑性塑料成型方法,不仅具有加工方便、操作简单和减污增效的特点,还可以根据需求灵活调控纤维和基体的种类与比例,大幅提高复合材料的力学性能。目前,虽然德国Arburg和日本三菱重工等企业已经在DFFIM技术上有所突破,但是国内的直接注射成型领域缺乏相关研究。开
轴承作为机械中常用关键部件,轴承故障严重掣肘主机的性能、寿命和可靠性。以往研究经验表明,对轴承故障进行诊断具有必要性、可行性和巨大的经济价值。本文将以深度学习模型为工具研究影响轴承故障诊断的因素,同时对方法进行改进、创新和应用。主要研究内容如下:第一,以两个经典的深度学习模型VGG-16和Res Net-50为工具,研究了故障位置、类型,轴承负载、转速,信号类型,网络深度,模型输入等对轴承故障诊断
可变刚度材料是一种能感知并识别外部刺激,从而实现自身刚度变换的材料。由可变刚度材料所制作的构件,在温度、电、光等的刺激下,相应的位置发生刚度变化。其在医学、软体机器人、土木工程、航空航天等领域有着广泛的应用。目前可变刚度功能的主要实现方式大多需要外部做功导致结构复杂庞大,且变化范围小、响应较慢、有较大的机械损耗。低熔点合金(LMPA)由于其低熔点特性,在温度不高于其熔点(30-300°C)时保持较
稀土发光高分子复合材料在防伪、发光、显示等领域的应用较为广泛。本文选用稀土掺杂荧光材料与聚乳酸(PLA)基体进行熔融加工制备了PLA基荧光复合材料,并对其流变、结晶、机械等性能进行了详细研究。此外,选用高韧性的聚己二酸-对苯二甲酸丁二酯(PBAT)对PLA进行增韧改性,在此基础上进一步制备了PLA/PBAT/荧光粉三元复合材料,对其荧光、机械、结晶和热学等性能展开研究;同时进行了荧光复合材料色彩性
核电站在事故或全厂失电时,由于主控室的能动空调系统功能丧失,然而人员、应急设备和照明等持续放热,若室内热量无法及时自主导出,必将导致主控室内温度持续升高,造成主控室内设备无法正常运行,室内人员的可居留功能得不到保证。为了解决核电站事故或失电情况下的热量排出问题,本文利用重力热管的传热特性,提出了一种事故失电条件下核电站主控室非能动通风系统的设计并对其通风性能进行研究。主要研究内容及结论如下:(1)
含能材料是指一种能够自主完成化学反应同时释放出大量能量的高能混合物。挤出成型具有连续化、自动化效率高等特点,在含能材料的制造加工领域应用广泛。锥形双螺杆加工设备适合加工较高粘度的物料,且易脱去物料中的水分,使加工过程安全可控,逐渐被广泛应用于含能材料的混合加工。以往的挤出成型往往采用“黑箱”操作,或局部开设视窗,无法清晰地观察机筒内物料的连续挤出过程。为此,本课题使用动态可视化的方法采用锥形异向旋
物料定量配重的精度及自动化程度分别决定了最终制品的性能及人员配置,进而影响企业的经济效益及发展规划。由于不规则物料的变形无规律可循,难以一次性地准确分割出与配重所需质量对应的物料。目前,不规则物料定量配重的主要方式是人工经验法多次切割和破碎后称重,存在精度低、效率低,耗费人力物力等缺陷。本文基于三维扫描进行不规则物料定量配重系统设计,准确、高效地完成不规则物料的定量配重,精度满足±0.3 kg的配
生产生活中会大量使用到危险化学物质,其中气态或气体加压后的液态是较为常见的存在形式。它们一旦发生泄漏,会直接威胁周围人员的生命和财产安全,亦会对环境造成巨大的破坏、引起社会恐慌等问题。而泄漏的前兆往往是微泄漏或者逸散性泄漏,这些泄漏难以发现且不会造成直接影响,往往会被人忽视。泄漏溯源是化学品泄漏事故处理的重要前提,实现快速泄漏溯源,于最短时间内准确定位微泄漏或者逸散性泄漏的泄漏源点是防止泄漏的必要