论文部分内容阅读
我国以煤为主的能源结构长期不变,而煤炭可采储量将难以满足未来的能源需求。历史原因导致的低回采率产生了巨大残煤资源量,仅山西省残煤储量就达数百亿吨,且多为优质煤炭资源。而我国煤炭的储采比却仅为35左右。因此,残煤复采是深挖现有储量开发潜力,保证国家能源供给的重要发展方向,也是一个十分复杂的技术问题。本文围绕残煤资源及下垮落式复合残采区开采岩层控制问题进行了研究,即残煤资源及复合残采区概念、复合残采区底板结构稳定性、开采可行性定量判定方法、复合残采区岩层移动下沉规律及预测、覆岩破坏及矿压显现规律。得到主要结论如下:本文进行了大量调研以及残煤开采矿井踏勘。详细剖析了不同地区残煤资源量、分布及特征,对残煤开采矿井进行统计,并基于统计结果对残煤进行了归类,总结提出了复合残采区概念。统计发现,我国历史煤炭平均回采率34.5%。通过提出的残煤储量公式估算可知,全国残煤基础储量1286.1亿吨,可采储量达403亿吨,会增加我国煤炭30.1%的储采比。进一步的研究发现,初次回采率小于20%的优质残煤可采储量达271.6亿吨,占全部残煤可采储量的67.4%,具有很高的开采价值。东部省份煤炭储采比平均增加95.9%,中西部增加51%。另外,东部产煤省残煤开采矿井占全部残煤开采矿井的65.82%。这些都表明残煤的开采对于保有储量匮乏的东部省份的煤炭工业可持续发展意义重大。通过对下垮落式复合残采区中部整层弃煤开采底板岩层结构的研究,发现下垮落式复合残采区底板分为应力集中区、底板结构影响区、稳定区。残采工作面经过底板结构影响区时,容易发生底板失稳。根据下垮落式复合残采区底板岩层结构处于静态、以扰动载荷为失稳诱因、受采空区环境影响的特点,建立了针对不同岩层层序的下垮落式复合残采区底板岩层“扰动砌体梁”模型和“扰动块体梁半拱”模型。通过对模型的求解和稳定性分析,揭示了其回转变形失稳和滑落失稳的机理,认为在岩层结构强度、块度一致的情况下,扰动载荷系数和扰动载荷分布系数达到相应的临界值时,底板岩层结构发生失稳。两种模型分别适应于岩层结构块度小于0.5的坚硬岩层和块度可以大于0.5的裂隙发育的厚硬岩层。此外,在下垮落式复合残采区底板岩层结构扰动模型稳定性分析的基础上,提出了以“底板岩层结构稳定性”为核心的下垮落式复合残采区开采可行性定量判定方法。通过对下垮落式复合残采区岩层移动下沉规律分析及预测模型的系统研究,建立了多参数长壁采空区下沉系数分布模型,通过统计数据验证了模型的正确性和准确性,并深入探讨了地表下沉系数、最大垂直膨胀量、埋深、采高与岩层下沉系数的定量关系。定义无量纲参数(1-q0)/ε0为岩层膨胀变形系数,其决定上覆岩层的变形特征。岩层膨胀变形系数存在最大值,其范围为2.84~3.40,平均为3.09。在此基础上,建立了上下垮落式复合残采区岩层移动下沉模型。分析刀柱采空区及刀柱煤柱的影响,建立了刀柱采空区及刀柱煤柱顶底板岩层的移动下沉模型。在上述研究基础上,建立了重复采动条件下反映采动岩层性质变化的下垮落式复合残采区岩层下沉曲线预测模型并进行了实测验证。通过下垮落式复合残采区中部整层弃煤覆岩垮落及矿压显现规律的相似模拟实验和数值模拟研究,发现下垮落式复合残采区形成过程中,残煤及其附近岩层裂隙增加,整体性减弱,力学特性降低。下垮落复合残采区内侧边缘和柱采区为应力降低区,煤柱以及采空区中部为应力增高区。残煤底板受到上部煤层开采扰动影响,底板岩层结构会发生一定的下沉和旋转。保证底板岩层结构稳定性是下垮落式复合残采区残煤安全回采的关键。下垮落式复合残采区开采会使其覆岩下沉形成陡升缓降的趋势,与垂直方向上岩层下沉规律一致。上述研究为后续下垮落式复合残采区开采岩层控制相关技术措施的制定提供重要参考。以白家庄煤矿的复合残采区中部整层弃煤7号煤层为研究对象,进行了开采可行性判定,并根据实测和相似模拟实验结果,采用MATLAB编写程序,绘制了岩层下沉曲线。采用物探和钻探方法探测了复合残采区地质情况,老空区不富含水且7号弃煤底板岩层结构稳定。此外,确定了7号弃煤开采工作面支护阻力和“三机”配套,并提出了安全开采的相关技术建议。