【摘 要】
:
高强度、可热处理的7075铝合金是航空航天领域重要的结构材料之一。在铝合金制造方法中,增材制造技术因其在复杂材料快速制造方面的优势而受到重视。相比其它增材制造技术(激光选区熔化、电子束选区熔化等),冷喷涂技术在较低温度下快速制造金属,尤其适用于易热氧化和热敏感材料,如铝合金、镁合金等。然而塑性相对较差的7075铝合金粉在冷喷涂过程中,由于塑性变形不足带来的高孔隙率会严重降低力学和耐蚀性能。冷喷涂后
论文部分内容阅读
高强度、可热处理的7075铝合金是航空航天领域重要的结构材料之一。在铝合金制造方法中,增材制造技术因其在复杂材料快速制造方面的优势而受到重视。相比其它增材制造技术(激光选区熔化、电子束选区熔化等),冷喷涂技术在较低温度下快速制造金属,尤其适用于易热氧化和热敏感材料,如铝合金、镁合金等。然而塑性相对较差的7075铝合金粉在冷喷涂过程中,由于塑性变形不足带来的高孔隙率会严重降低力学和耐蚀性能。冷喷涂后续复合热加工方法可提高冷喷涂铝合金的致密性和综合性能。因此,本文通过优化低压冷喷涂工艺制备了Al2O3颗粒增强的7075铝合金复合块材,并采用退火热处理和热轧加工对复合块材进行后续加工,结合金相和扫描电镜观察微观组织结构同时进行复合块材的拉伸性能和腐蚀行为的测试,研究热加工工艺对冷喷涂7075铝合金块材组织和性能的影响规律,探究相关理论。论文的主要工作如下:采用低压冷喷涂的方法,分别制备了不规则氧化铝增强7075铝合金复合块材和球形氧化铝增强7075铝合金复合块材,分析氧化铝形状对冷喷涂铝合金复合块材组织结构和耐蚀性的影响。得出:不规则氧化铝增强的铝合金复合块材结构致密性和耐蚀性差,归因于不规则氧化铝颗粒易嵌入沉积块材而发生相互碰撞破碎,从而引入较多孔洞缺陷降低了材料致密性和耐蚀性;而球形氧化铝易反弹具有原位夯实作用,增大了铝合金粉末的塑性变形,使得冷喷涂铝合金复合块材的结构更致密,从而表现出更高的耐蚀性。对球形氧化铝增强的7075铝合金复合块材进行不同温度下退火热处理,分析退火温度对铝合金块材组织、力学和耐蚀性的影响。得出:随着热处理温度从300℃升高到500℃,组织中颗粒界面融合的程度增大、界面缺陷减少,铝合金颗粒内晶粒长大并析出弥散分布的第二相;延伸率随着温度升高而增大,500℃退火样品的延伸率为4.19%,是未退火样品的2倍;抗拉强度随退火温度升高变化不大,但是500℃退火样品抗拉强度下降,归因于退火软化;不同温度退火样品均发生点蚀,长时间浸泡腐蚀400℃退火样耐蚀性最佳。对400℃退火后的球形氧化铝增强的7075铝合金复合块材进行不同下压量下的热轧加工,分析下压量对铝合金块材组织、力学和耐蚀性的影响。得出:热轧显著提高了7075铝合金块材的致密性,孔隙率下降明显,抗拉强度、延伸率和耐蚀性随着下压量增大呈增大趋势,下压量30%样品的抗拉强度约349 MPa、延伸率达到6.18%、耐蚀性最佳;因此,采用低压冷喷涂法制备的以球形氧化铝为增强相的7075铝合金复合块材结合后续热处理和热轧加工工艺可以获得致密结构和较好的强韧性及耐蚀性。
其他文献
上世纪以来,科技经济高速发展的同时伴随着化石燃料的大量开发利用。相伴而来的环境污染和能源危机问题也逐渐突显,并成为现代人类社会必须直面的问题之一。化石燃料在实际开发应用中会引起土地坍塌、自然资源侵蚀、温室效应、大气污染等问题,这对人们的实际生存状况带来巨大挑战。因此,寻求清洁的新能源替代化石燃料亟待解决。进入21世纪以来,科研工作者从理论和实践出发,利用各式各样的方法和手段去寻找、开采、发展新型的
随着新能源汽车销量与保有量齐飞,对现在的新能源汽车补能体系不断提出新的挑战,“充电难”也成为焦点。充电体系经过多年的发展,已基本建成但还不完善,充电时间长仍然是目前急需解决的主要技术问题。为了找寻一种高效安全的储能电池,水系锌离子电池(AZIBs)引起了人们的广泛关注。因为使用的是水性电解液,具有比有机电解液高几个数量级的电导率和更高的安全性,并且使用的是锌作为负极,价格低廉,对能源材料的装配要求
高熵合金是一种多主元的新型合金,由于其独特的微观组织和“四大效应”使得高熵合金具有优异的热稳定性和耐腐蚀性,同时可通过调配主元的成分可设计出高强度或高韧性的材料,其中CoCrFeMnNi高熵合金体现出优异的断裂韧性。铝具有轻质、经济等优点,且在高温下易与高熵合金的组元元素发生扩散反应形成金属间化合物,以高熵合金和铝为基体可制备具有“互补效应”的金属/金属间化合物叠层复合材料,综合力学性能更加优异,
碳化铌(Nb C)增强铁基复合材料具有优异的耐磨性能,广泛用于机械关键零部件的表面强化。随着先进制造技术的不断发展,对铁基关键零部件的使用寿命要求越来越高,因此,对其表面强化的堆焊涂层耐磨性能提出了更高的要求。研究表明,通过添加少量Ti合金元素,能够与Nb元素生成(Nb,Ti)C复合碳化物,从而改善Nb C与铁基体结合性较差的问题,进一步提升堆焊涂层的耐磨性能。本文采用熔化极气体保护电弧堆焊技术,
Mn-Co尖晶石被认为是最有前途的固体氧化物燃料电池金属连接体防护涂层材料,但在实际工作环境下涂层仍存在电导率较低和Cr毒化阴极等问题,造成电堆性能衰减。Cu元素的掺杂一方面可以促进混合价元素(Co2+/Co3+和Mn3+/Mn4+)之间的电子跃迁,提高电导率;另一方面可增加热膨胀系数,增强涂层与基体之间的热匹配性。本文采用两种工艺路线制备防护涂层,其一是采用固相反应法制备Cu掺杂Mn1.5Co1
化石燃料不断的消耗、温室气体的大量排放,致使地球的气候持续恶化,寻找清洁型能源来缓解当前窘境早已刻不容缓。锂离子电池,轻便易携带、技术成熟、储蓄电量足、使用寿命长和环保等优势,使其成为了新一代绿色能源中的引领者,在日常生活电器和智能高科技领域有着广泛的应用。锂元素是元素周期表中三号元素,在我们生存的地球上的含量十分有限,而单独中国区域的新能源汽车销售总量在过去10年中就已经增长了接近20倍。显而易
在国家大力倡导传统聚落更新保护的背景下,对传统聚落空间形态方面的研究有着重要的意义。文章从多个角度探讨和研究传统聚落的空间形态特征,总结聚落现存的问题,提出相应策略,为传统聚落更新以及乡村振兴发展提供更多的参考。已有的研究中对于河西走廊的聚落空间形态,基于建筑学、城乡规划学和文化地理学等角度在文化宗教习俗等方面有较多的研究,取得了丰硕的成果。但是对于该地区的定量分析较少,所以本文主要基于道萨迪亚斯
随着人口的快速增长和经济的迅速发展,能源问题已经成为限制人类社会发展进步的重大问题之一。钠离子电池具有低成本、高安全性、及与锂离子电池相似的电化学反应机制等优点被认为是最具有发展前景的电网级储能替代品之一。鉴于电极材料是提升钠离子电池性能的关键因素,开发高性能负极材料一直是研究的重点。然而,由于钠离子具有较大的离子半径、较高的还原电位、较慢的反应动力学,寻找到具有高可逆容量和简便反应过程的电极材料
由于化石燃料地过度开采和使用,人类面临着严峻的环境污染和能源紧缺问题。发展清洁能源,是实现“双碳”重要战略的必由之路。氢能由于比能量高、温室效应气体零排放,被认为是理想的清洁能源形式。电化学水分解电解池和燃料电池是实现氢能经济的关键技术。目前在应用中,质子交换膜燃料电池(Proton exchange membrane fuel cell,PEMFC)成本长期居高不下,阴离子交换膜燃料电池(Ani
凹凸棒石是重要的稀缺性非金属矿产资源,素有“工业味精”之称,享有“千用之土、万土之王”之美誉,具有“胶体、吸附、载体、补强”四大核心功能。目前,对凹凸棒石热处理功能化研究主要集中在热处理温度为800℃以下,凹凸棒石结构未塌陷之前进行实验探索研究,而凹凸棒石在800℃以后煅烧热处理后晶相、物理化学性质的变化研究较少,纳米凹凸棒石凝胶化成地质聚合物再烧结成型制备新型陶瓷产品的研究更是一个全新的课题。其