论文部分内容阅读
酪蛋白磷酸肽(CPP)不但可以促进人体对钙、铁、锌等矿物质的吸收与利用,同时在提高机体免疫力、抗氧化等方面也有着广泛的应用。欧美等发达地区已经把其定性为功能性原料,应用在食品、保健品、日化用品等领域。目前市场上营养和应用价值比较高的CPP产品(纯度≥90%)主要是从酪蛋白的酶解液中分离提纯和干燥后制备。在干燥方式和方法上多数采用低成本的传统干燥方式,如热风干燥、流化床干燥、喷雾干燥等,得到的产品存在颗粒较大,溶解速率慢等缺点。采用真空冷冻干燥的方法可制备溶解速率较快的产品,但相关过程存在耗时长、能耗大、生产效率低等弊端,从而造成产品的生产成本较高。因此,开发节能环保、生产连续且效率高的新型制备技术及加工体系,对CPP在食品、保健品等领域的应用和推广具有重要的理论研究价值和社会意义。本课题基于超临界流体和溶液相互作用机制的超临界流体辅助雾化技术,开发了一种制备速溶功能性食品因子的新型制备技术及加工体系,该技术具有绿色环保、可持续操作、操作条件温和、无化学残留等优点;同时对比了采用传统两步法(CO2高压体系处理结合传统喷雾干燥技术)与新型的一步法制备技术制备得到的CPP速溶粉末的相关特性。主要研究内容如下:1. CO2高压体系对CPP粉溶解行为的影响基于两步法制备工艺,系统研究了CO2高压体系处理、传统喷雾干燥技术对CPP粉末溶解行为的影响。研究结果表明,在高压处理阶段,溶液中CO2的过饱和度的大小与共溶质作用的强弱密切相关。过饱和度越大,结合喷雾干燥技术所制得的CPP粉末的溶解速率越快。增大压力、适当降低温度和延长处理时间都可以增大过饱和度,最优的反应条件为40℃、8.27 MPa、40 min,过饱和度可达8.1%左右。此条件下制备的样品的溶解速率是原粉的5.6倍,是未经高压体系处理制备样品的2.5倍。2. 两步法制备工艺对CPP粉表观结构和功能性质的影响采用传统两步法制备CPP粉,并对其结构和性能进行表征。结果表明,随着高压体系压力的增大,共溶质作用得到加强,制得的样品中具有中空超薄外壳结构的微粒所占比例也随之增加。由于中空薄壳微粒具有更大的粒径和比表面积,导致样品的平均粒径和比表面积增大,溶解速率加快。对比CPP粉的理化性质,结果表明制得的速溶产品在溶解速率提高的同时,其持钙力、抗氧化能力、羟自由基清除能力、乳化能力等功能性质没有发生明显变化。3. 新型速溶CPP粉的制备体系设计及产品制备针对传统CPP粉末主要通过两步法制备,生产效率低、溶解性较差、无法连续生产等弊端,采用超临界流体物理改性技术,结合共溶质和辅助雾化介质作用,设计开发了高效、可连续生产的一体化新型速溶CPP粉末制备技术及加工体系。该体系主要包括超临界流体调控单元、反应行为调节单元及喷雾干燥单元。研究结果表明:采用新型加工体系制备的速溶粉末呈现超薄碎片化结构,具有较大的比表面积,在冷水中可快速分散和溶解(54 s内完成),其溶解速率为CPP原料的32倍以上,为传统喷雾干燥制备的CPP粉末的12倍以上。速溶粉堆积密度为0.30 g/m L,小于研磨后的冷冻干燥粉(0.34g/m L),大于传统喷雾干燥粉(0.17 g/m L)和初始海绵状冷冻干燥粉(0.14 g/m L)。速溶粉的流动性良好,休止角33.1。,介于喷雾干燥粉(31.2。)和冷冻干燥粉(36.5。)之间,可满足现代工业生产的加工需求。