论文部分内容阅读
飞机在大气中受到阵风干扰时,附加的气动力会同时引起飞机的刚体运动和弹性振动。其中刚体运动部分在干扰驾驶员正常操纵的同时会降低乘员的乘坐品质,而弹性振动部分则在增加结构载荷的同时缩短了部件的疲劳寿命。随着航空器结构精细化设计技术的进步与发展,多种运输机和无人机的展弦比及结构柔性均出现不断增大的趋势,这使飞机低阶弹性模态频率和刚体运动频率越来越接近,此时弹性模态和刚体模态的耦合使飞机的阵风响应特性更趋复杂,阵风减缓方案的设计难度也随之增大。因此,建立满足工程精度的弹性飞机阵风响应模型,并开展阵风减缓控制系统的设计具有重要的工程应用价值并有深远的技术发展意义。基于飞机阵风减缓的技术需求,本文研究工作摘要如下:1.在对弹性飞机建立耦合结构动力学特性和非定常气动力特性的开环气动弹性模型时,一个关键环节即构造时域的气动力模型。为便于飞机设计初期阵风减缓控制律的设计,工程上普遍使用面元法构造频域气动力模型,再对其进行拉氏域的有理延拓以转换到时域。然而,常用算法都难以妥善处理拟合精度和拟合效率之间的矛盾。鉴于此,本文对拟合阶次较低的最小状态拟合算法进行了改造,将算法中关键的交替迭代过程简化为一次代数求解过程,并结合非线性优化算法对初始参数进行了优化。数值结果表明,改进方法在保证整体拟合精度的同时有效提高了计算效率和关键模态项的拟合精度。2.在设计阵风减缓控制律的过程中,以某一飞行状态为基础的设计结果往往不能保证在一定飞行参数范围内的性能。本文以开环气动伺服弹性系统的状态空间方程为基础,针对不同的精度需求,分别构造了可计及马赫数和动压变化的线性与非线性参数变化模型。为完成进一步的鲁棒控制律设计,将参数变化模型转换为线性分式变换模型并进行了频域加权函数的设计。通过分别针对小型和大型运输机的算例表明,上述设计方法在保证控制律鲁棒性的同时,具有较好的阵风载荷减缓效果。3.为进一步提升阵风减缓控制律的设计效率,本文又从另一个角度试图解决控制律的鲁棒性能与设计算法复杂度之间的矛盾。基于经典LQG(Linear Quadratic Gaussian)设计理论,通过建模策略的改进保证了设计结果鲁棒稳定性的改善,并提出了相应的设计流程以保证设计结果在各性能和稳定性之间的合理折中。此方法的核心思想是在设计阶段为控制律的输入端(即传感器输出端)添加虚拟的高频有色噪声干扰以重新设计Kalman滤波器。为在设计阶段能对控制律的鲁棒稳定性进行准确评估,本文发展了一种新的稳定裕度分析方法,即变结构μ分析方法,并证明了方法的单调收敛性。算例表明,改进的LQG设计方法在有效提升设计效率的同时,保证了设计结果的鲁棒稳定性和鲁棒性能,即设计出的控制律在结构参数和飞行参数发生变化时仍有较好的阵风减缓效果。4.为显式处理舵面偏转约束,并充分利用阵风测量信号,本文提出了一种基于LQG理论的模型预测控制(Model Predictive Control,MPC)技术。为保证经典MPC控制律的名义稳定性,将其预测步长延拓为无穷大以保证控制律稳定性。然后,对于每个采样时刻求解的二次规划模型,将改进的LQG控制律引入控制序列以将控制步长延拓为无穷大。通过对经典MPC控制律的改进,控制律的鲁棒稳定性和鲁棒性能均得到了有效改善。为进一步处理在线求解优化问题所产生的控制延迟问题,提出了一种控制延迟策略,可在减小在线计算量的同时保持控制律的鲁棒性能。5.对于机翼存在几何大变形的大展弦比高柔性飞机,结合几何精确非线性本征梁理论和非定常片条气动力理论构造了完整的气动弹性模型,并在此基础上开展了大柔性飞机静气弹特性和动气弹特性研究。其中,静气弹特性关注于机翼几何大变形对发散速度和副翼反效速度的影响,而动气弹特性关注于阵风响应特性和阵风减缓控制律的设计。针对算例飞机,基于对其配平特性、配平状态下的模态特性和阵风响应特性的分析,分别设计了静态输出反馈(Static Output Feedback,SOF)控制律、LQG控制律和MPC控制律。通过仿真结果发现,在均匀分布阵风情况下,SOF控制律的控制效果整体上优于LQG控制律,但LQG控制律在非均匀阵风激励下有远优于SOF控制律的阵风减缓效果,MPC控制律无论对于均匀或非均匀阵风始终能保持最佳的控制效果。