论文部分内容阅读
随着现代工业的飞速发展,人们对于物质的需求不断提升,使用的各类化工产品产量也在逐年增加。其中,间甲基苯酚作为一种基本的有机合成材料被大量应用于工业生产中,同时也带来了相应的环境问题。处理间甲基苯酚废水的方法中,湿式催化氧化法受到人们的广泛关注,特别是非均相催化氧化,而其中的催化剂载体是研究重点。碳纳米管(CNT)是一种性能优良的载体,但是由于其颗粒粒径较小,无法直接应用于固定床反应中,否则较大的床层压降会造成CNT的流失,导致二次污染的发生。为了解决上述问题,可将CNT与微纤复合材料相结合,制备出同时具有CNT与微纤复合材料优点的催化剂载体,并对其制备过程进行优化,然后负载金属活性组分制备出一系列催化剂并测试其对间甲基苯酚的湿式催化氧化反应活性,对其反应条件进行优化,并研究催化剂失活及催化反应机理。
含磷废水同样也是近年来导致水生生态环境污染的重要原因之一,目前人们已经开发出了许多处理含磷废水的方法,其中吸附法因其成本低,设计简单,操作简便,不会产生大量需要二次处理的污泥而被广泛应用。镧系化合物具有较高的吸附速率以及较大的吸附容量,但其存在合成条件复杂,成本较高,容易烧结以及容易流失的缺点。将微纤复合材料与碳酸镧相结合,可以有效避免化合物的团聚,提高吸附效率,延长使用寿命。首先对碳酸镧负载微纤复合材料(LC-MF)的制备进行优化,然后将其应用于含磷废水的吸附反应中,研究LC-MF的吸附性能及吸附机理。
首先,采用湿法造纸技术,高温烧结以及有机化学气相沉积法(MOCVD)制备出Fe负载微纤包覆碳纳米管催化剂(Fe-CNT/MF)并将其应用于间甲基苯酚的结构化固定床湿式催化氧化反应中。结果表明,MOCVD法制备出的催化剂与浸渍法相比具有更高的催化效率。较高的活性组分负载量,温度,床层高度以及较低的进料流速有利于间甲基苯酚的催化降解,转化率可达到99%以上,总有机碳(TOC)转化率可达到45%以上,且Fe-CNT/MF具有较好的稳定性和重复利用性。间甲基苯酚在Fe-CNT/MF结构化固定床反应器上的湿式催化氧化反应主要通过两条路径进行,分别是先转化为甲基氢醌和先转化为甲基儿茶酚,两条路径最后都会被完全氧化为CO2和H2O。
然后,采用化学气相沉积法(CVD),乙炔作为碳源,直接在微纤复合材料表面生长碳纳米管制备微纤复合碳纳米管材料(CNT-MF)。结果表明,直接生长法制备得到CNT-MF具有更好的质量,最佳合成条件为700℃,氮气流速为500mL/min,乙炔进料体积为氮气10%,沉积时间80min。将制备得到的CNT-MF应用于间甲基苯酚的结构化固定床吸附反应中,结果表明,与颗粒填充固定床相比,结构化固定床吸附容量有一定降低,但可以有效降低床层压降和床层阻力,提高传质传热,有利于间甲基苯酚的吸附反应。
其次,采用MOCVD法在CNT-MF上负载金属活性组分,制备出Fe负载微纤复合碳纳米管催化剂Fe-CNT-MF并应用于间甲基苯酚的结构化固定床湿式催化氧化反应当中。结果表明,较高的反应温度,催化剂床层高度以及H2O2浓度,较低的进料流速和pH值都有利于间甲基苯酚的降解,转化率可以达到99%以上,TOC转化率可以达到53%以上,但是在较低的pH值下活性组分的浸出严重。Fe-CNT-MF反应24h后依然可以保持较高的催化活性,间甲基苯酚转化率仅下降10%,TOC转化率仅下降7%,且整个过程没有活性组分的浸出。机理研究结果表明酸性条件下,所有间甲基苯酚都先转化为甲基氢醌进行降解,碱性条件下,有一部分间甲基苯酚会先转化为甲基儿茶酚进行降解。Fe-CNT-MF失活机理研究结果证明了催化剂的失活原因主要包括碳化合物沉积,催化剂表面性质变化以及反应过程中含氧基团的引入。
最后,将微纤复合材料与碳酸镧相结合,制备出一种新型的微纤复合碳酸镧吸附剂(LC-MF)并对其制备进行优化,然后应用于含磷废水的处理当中。结果表明,磷酸盐在LC-MF上的吸附反应最佳的pH值范围是6-9,溶液的离子强度和共存阴离子对LC-MF吸附反应影响较小。吸附过程符合Freundlich热力学模型及二级反应速率方程模型,证明吸附反应是化学吸附,平衡时间约为300min。粒子内部扩散模型表明LC-MF对磷酸盐的吸附分为三个阶段,包括表面扩散,颗粒内部扩散以及平衡过程。经过5次再生循环实验后,LC-MF的吸附容量依然维持在原吸附容量的80%以上,证明LC-MF具有良好的重复利用性。最后研究了吸附剂吸附磷酸盐的吸附机理,证明了吸附过程包含静电吸引过程以及配体交换过程。
含磷废水同样也是近年来导致水生生态环境污染的重要原因之一,目前人们已经开发出了许多处理含磷废水的方法,其中吸附法因其成本低,设计简单,操作简便,不会产生大量需要二次处理的污泥而被广泛应用。镧系化合物具有较高的吸附速率以及较大的吸附容量,但其存在合成条件复杂,成本较高,容易烧结以及容易流失的缺点。将微纤复合材料与碳酸镧相结合,可以有效避免化合物的团聚,提高吸附效率,延长使用寿命。首先对碳酸镧负载微纤复合材料(LC-MF)的制备进行优化,然后将其应用于含磷废水的吸附反应中,研究LC-MF的吸附性能及吸附机理。
首先,采用湿法造纸技术,高温烧结以及有机化学气相沉积法(MOCVD)制备出Fe负载微纤包覆碳纳米管催化剂(Fe-CNT/MF)并将其应用于间甲基苯酚的结构化固定床湿式催化氧化反应中。结果表明,MOCVD法制备出的催化剂与浸渍法相比具有更高的催化效率。较高的活性组分负载量,温度,床层高度以及较低的进料流速有利于间甲基苯酚的催化降解,转化率可达到99%以上,总有机碳(TOC)转化率可达到45%以上,且Fe-CNT/MF具有较好的稳定性和重复利用性。间甲基苯酚在Fe-CNT/MF结构化固定床反应器上的湿式催化氧化反应主要通过两条路径进行,分别是先转化为甲基氢醌和先转化为甲基儿茶酚,两条路径最后都会被完全氧化为CO2和H2O。
然后,采用化学气相沉积法(CVD),乙炔作为碳源,直接在微纤复合材料表面生长碳纳米管制备微纤复合碳纳米管材料(CNT-MF)。结果表明,直接生长法制备得到CNT-MF具有更好的质量,最佳合成条件为700℃,氮气流速为500mL/min,乙炔进料体积为氮气10%,沉积时间80min。将制备得到的CNT-MF应用于间甲基苯酚的结构化固定床吸附反应中,结果表明,与颗粒填充固定床相比,结构化固定床吸附容量有一定降低,但可以有效降低床层压降和床层阻力,提高传质传热,有利于间甲基苯酚的吸附反应。
其次,采用MOCVD法在CNT-MF上负载金属活性组分,制备出Fe负载微纤复合碳纳米管催化剂Fe-CNT-MF并应用于间甲基苯酚的结构化固定床湿式催化氧化反应当中。结果表明,较高的反应温度,催化剂床层高度以及H2O2浓度,较低的进料流速和pH值都有利于间甲基苯酚的降解,转化率可以达到99%以上,TOC转化率可以达到53%以上,但是在较低的pH值下活性组分的浸出严重。Fe-CNT-MF反应24h后依然可以保持较高的催化活性,间甲基苯酚转化率仅下降10%,TOC转化率仅下降7%,且整个过程没有活性组分的浸出。机理研究结果表明酸性条件下,所有间甲基苯酚都先转化为甲基氢醌进行降解,碱性条件下,有一部分间甲基苯酚会先转化为甲基儿茶酚进行降解。Fe-CNT-MF失活机理研究结果证明了催化剂的失活原因主要包括碳化合物沉积,催化剂表面性质变化以及反应过程中含氧基团的引入。
最后,将微纤复合材料与碳酸镧相结合,制备出一种新型的微纤复合碳酸镧吸附剂(LC-MF)并对其制备进行优化,然后应用于含磷废水的处理当中。结果表明,磷酸盐在LC-MF上的吸附反应最佳的pH值范围是6-9,溶液的离子强度和共存阴离子对LC-MF吸附反应影响较小。吸附过程符合Freundlich热力学模型及二级反应速率方程模型,证明吸附反应是化学吸附,平衡时间约为300min。粒子内部扩散模型表明LC-MF对磷酸盐的吸附分为三个阶段,包括表面扩散,颗粒内部扩散以及平衡过程。经过5次再生循环实验后,LC-MF的吸附容量依然维持在原吸附容量的80%以上,证明LC-MF具有良好的重复利用性。最后研究了吸附剂吸附磷酸盐的吸附机理,证明了吸附过程包含静电吸引过程以及配体交换过程。