论文部分内容阅读
近年来,数据中心和高性能计算机系统应用的快速发展使得支撑短距离数据通信和计算机连接中的高速光互连技术倍受关注。相比于传统的电缆连接技术,光互连技术具有能耗低、可快速切换、可波分复用及并行、可重构性、跳数少等优点,因此光互连技术具有绝对的优势并将取代所有的数据中心网络架构的电子互连。而目前,短距离光互连技术的主流解决方案则是垂直腔面发射激光器(Vertical-cavity Surface-emitting lasers,VCSELs)与多模光纤配合技术。该技术由于具有能耗小、成本低且带宽密度大等巨大优势,所以现在并且将来还会继续主导短距离光互连市场。为了构建下一代高速数据中心网络架构,进一步提升短距离光互连的传输速率,基于短波波分复用技术的多通道传输的解决方案,由于可大幅度减少光纤成本,已成为当前的研究热点。其中,400G BiDi MSA工作组和IEEE 802.3cm工作组都制定了关于单纤双向通信技术方案的标准,此技术方案由于可向前兼容,在现有的基础设施上可直接通向400G网络架构而备受青睐。目前,市场上的BiDi收发器采用的是分光镜方法来分开收、发不同波长的光信号。此方案需要较为精密的光学对准系统,导致封装成本较高。另外,有研究学者将VCSEL和PIN光电探测器(PIN photodetector,PINPD)进行横向集成构成收发一体芯片,但是两单元器件与光纤的耦合效率比较低,仅分别为70%和60%。因此针对以上问题,提出了多种应用于单纤双向通信技术并在垂直方向集成的收发一体芯片。该芯片与现有的分立器件相比,可有效提高光纤的带宽利用率,减小光纤的使用数量和成本;与现有的BiDi收发器相比,可省去安装分光镜过程,有效节约封装成本;与横向集成收发芯片相比,能够有效提升器件与光纤的耦合效率至90%。基于VCSEL和多模光纤配合方案具备的优势,该芯片可有望成为应用于短距离光互连中单纤双向通信的低功耗、低封装成本、高带宽密度的收发一体芯片。本课题完成的主要研究内容和创新成果如下:1.提出了 VCSEL-PINPD垂直集成收发一体芯片,完成了该垂直集成器件从理论结构设计、器件性能仿真到制备实验证明的过程,充分证明了该垂直集成器件的可实践性,为在短距离光互连技术中的应用奠定了基础。(1)提出了一种腔内分布式布拉格反射镜(Distributed bragg reflector,DBR)的新型结构,完美解决了垂直集成器件中VCSEL单元和PIN光电探测器单元之间的光解耦问题。通过在一个具有低品质因子(Q值)的谐振腔中加入周期性DBR结构,并将谐振腔和DBR的中心波长分别设置在发射波长和探测波长处,实现在发射波长高反、在探测波长处高透的功能。仿真设计可以实现在发射波长上接近100%的高反射率和在探测波长上接近100%的高透射率,并且高于85%高透射率的探测波长范围可以达到20 nm。(2)设计完成了光互连中链路两端相互匹配的VCSEL-PINPD收发一体芯片的器件结构,并仿真完成了该对芯片的VCSEL单元和PINP D单元的静态、动态特性研究和分析了两单元之间分别在光学和电学方面的相互影响。该对芯片的两工作波长分别设计为848.1 nm和805.3 nm;VCSEL单元的阈值电流分别为0.8 mA和1.1 mA,斜率效率分别为0.81 W/A和0.86 W/A,3 dB调制带宽分别为15.1 GHz和10.2 GHz;PINPD单元的量子效率谱宽分别为15 nm和13 nm(当量子效率大于70%时),3dB响应带宽约为23 GHz。仿真结果证明,两器件单元可同时并独立地进行工作,在具有良好的静态性能的前提下,传输带宽可达到10.2 GHz。(3)外延生长并制备了 VCSEL-PINPD垂直集成器件(850 nm发-810nm收端),完成了对基于新型腔内DBR结构的VCSEL单元的静态特性研究与分析。VCSEL单元的阈值电流为3 mA,斜率效率为0.84 W/A。由于VCSEL单元是决定收发一体芯片能否实现的关键单元,因此该实验不仅验证说明了 VCSEL-PINPD垂直集成器件的可实践性,并且为在短距离光互连单纤双向通信中的应用奠定了坚实的基础。2.为了进一步匹配短波波分复用标准,充分利用OM5光纤的传输损耗小、传输距离远等优势,提出了新型VCSEL-谐振腔增强型光电探测器(Resonant cavity enhancement photodetector,RCEPD)垂直集成器件结构。由于RCEPD的吸收区可采用InGaAs/AlGaAs量子阱,因此相比于PINPD,吸收波长可扩展至900 nm甚至更长。完成了 850 nm发-810 nm收端的VCSEL-RCEPD垂直集成器件的结构设计、静态和动态性能仿真以及两单元分别在光学方面和电学方面之间的相互影响。该集成器件的VCSEL单元的阈值电流为1.68 mA,斜率效率为0.58 W/A,3 dB调制带宽为12.8 GHz;PD单元的量子效率谱宽为8 nm(量子效率大于50%),最大量子效率为60%,3 dB响应带宽为65 GHz。在光学方面,两器件单元之间的影响较小;在高频电学方面,两器件单元在-40 dB的隔离度下限制带宽为112 GHz,因此VCSEL-RCEPD集成器件两单元可同时并独立地进行工作。VCSEL-RCEPD集成器件为使工作波长红移的集成器件设计奠定了一定的基础。3.为了在满足较高的量子效率的条件下,拓宽集成器件的量子效率谱宽,提出了 VCSEL-双腔RCEPD垂直集成器件。完成了光互连链路两端相互匹配的VCSEL-双腔RCEPD垂直集成器件光学结构设计、静态和动态性能仿真以及分析了两单元有源区对彼此相关性能的影响。集成器件的VCSEL单元的阈值电流分别为1.6 mA和1.7 mA,斜率效率分别为0.74 W/A和0.97 W/A,3 dB调制带宽分别为9.5 GHz和11.0GHz;PD单元的3dB响应带宽都约为10GHz,量子效率谱宽分别8 nm和6 nm(量子效率大于60%时),最大量子效率可达到90%以上。相比于VCSEL-RCEPD来说,在谱宽相近的情况下,量子效率提高了 20%~30%;而在量子效率相近时,量子效率谱宽则扩展了 4~6 nm。在达到较高的量子效率的前提下,量子效率谱的拓宽能够有效增加对激光器温度变化和光链路不稳定性的容忍度,提高了垂直集成器件的实用性。VCSEL-双腔RCEPD能够充分利用短波波分复用技术,并通过优化两单元的结构得到较好地高频特性,更好地实现短距离光互连单纤双向通信。