论文部分内容阅读
空间技术近年来正处于高速发展阶段,各种型号的航天器被频繁地发射到太空中去执行复杂空间飞行任务。随着航天器飞行任务量的加重和在轨时间的延长,航天器的耗能也急剧增加。这就给航天器的能量来源----太阳电池阵列提出了更高的要求,包括更高的效率和更长的寿命。目前,主流空间用太阳电池为晶格匹配(LM)三结GaAs太阳电池,但是由于常规晶格匹配电池中各结子电池之间带隙不匹配而引发的电流失配现象,限制了其光电转换效率进一步的提高。为了提高空间用三结太阳电池的光电转化效率,晶格失配(UMM)三结GaAs太阳电池应运而生,但是晶格失配电池中同样存在着子电池之间因为晶格常数差别太大而导致的晶格失配问题。为了消除晶格失配现象对太阳电池转换效率的消极影响,在工艺上通过引入缓冲层等特殊结构来解决这一问题,但由此引发的对该三结电池抗辐射能力的影响还有待于进一步的研究。因此对晶格匹配和晶格失配的三结GaAs太阳电池辐射效应进行对比研究,对确定晶格失配三结GaAs太阳电池的空间应用潜力,以及揭示太阳电池辐射效应产生的内部机理,甚至于进一步实现抗辐射加固,都有着重要的意义。 本文以晶格匹配Ga051In049P/Ga099In001As/Ge三结太阳电池和晶格失配Ga043In057P/Ga092In008As/Ge三结太阳电池作为研究对象,分别对其进行了1MeV电子以及3MeV、8MeV质子辐照试验。分析辐照后两种类型的太阳电池片样品,开路电压Voc,短路电流Isc,最大输出功率Pmax,填充因子FF以及外量子效率EQE产生变化的原因;使用Mulassis软件对不同能量粒子辐照产生的非电离作用能量损失(NIEL)在三结太阳电池内部各层材料边界处的分布进行了模拟计算;采用SRIM软件对质子辐照太阳电池时,质子在电池内部的射程深度,位移损伤缺陷在各层材料中产生概率的分布情况也进行了计算。同时使用位移损伤剂量法,尝试对两种国产三结太阳电池的在轨性能退化进行预测。 研究发现:不同能量的粒子对三结太阳电池各电参数产生的退化曲线有着相同的退化规律。3MeV质子辐照产生的辐照感生缺陷对太阳电池各子电池的电学特性退化仍要比其他能量的粒子更为严重,这是因为不同能量的粒子穿透能力不同,在太阳电池活性区产生的缺陷类型和数目不同,造成位移损伤程度不同,造成的退化影响也不尽相同。 相同辐照条件下,与晶格匹配电池相比,晶格失配电池整体上的电学参数退化稍大。同时结合软件计算的结果可知,这是因为晶格失配电池特有布拉格反射器和缓冲层结构,使得非电离能损在晶格失配电池内部沉积的增加,导致串联电阻的增大;同时因为晶格失配问题导致中间电池区边缘部分有应变残余,使得与衬底接触一侧的界面不稳定,更易引起位移损伤缺陷浓度的增加。但是两种电池电学参数最终退化幅度差别较小,这表明晶格失配电池引入的特殊结构并没有使其抗辐照性能发生急剧下降。同时晶格失配电池有着更高的初始光电转换效率,这使得即使有着更高的辐照退化率,最终晶格失配电池的最大输出功率也仍可能大于晶格匹配电池。充分体现了晶格失配电池在空间应用方面的巨大潜力,并有待于进一步的发掘研究。同时通过位移损伤剂量法进行了不同能量带电粒子产生的辐射损伤等效性研究。对不同能量的电子和质子辐照造成的最大输出功率随位移损伤剂量的退化曲线进行了拟合,得出了最大输出功率随位移损伤剂量的退化动力学方程,可以尝试对两种国产三结太阳电池的在轨性能退化进行预测。并为进一步准确预测国产三结太阳电池在轨特性退化打下了一定的基础。