【摘 要】
:
微波加热用隔热耐火结构的热透波性能对微波加热的模式和效率均具有重要影响,因此探究隔热耐火结构在微波加热过程中的动态热透波性能的变化至关重要。在高温环境下,微波加热用隔热耐火结构的温度达到几百度甚至上千度,而且隔热耐火结构还存在较大的温度梯度。相比常温状态,隔热耐火结构的透波性能可能发生很大的变化,甚至是根本性的改变,造成炉膛内微波场强度衰减或谐振模式变化,使微波能利用率下降或加热效果变差。但目前对
论文部分内容阅读
微波加热用隔热耐火结构的热透波性能对微波加热的模式和效率均具有重要影响,因此探究隔热耐火结构在微波加热过程中的动态热透波性能的变化至关重要。在高温环境下,微波加热用隔热耐火结构的温度达到几百度甚至上千度,而且隔热耐火结构还存在较大的温度梯度。相比常温状态,隔热耐火结构的透波性能可能发生很大的变化,甚至是根本性的改变,造成炉膛内微波场强度衰减或谐振模式变化,使微波能利用率下降或加热效果变差。但目前对微波加热用隔热耐火结构透波性能的研究通常将介质视为温度均匀的整体,没有考虑温度梯度。为了考虑温升对材料热透波性能的影响,本文以微波加热用典型氮化物陶瓷及其复合隔热耐火结构为例,运用物理表征和数值仿真协同分析透波性能,揭示了氮化物陶瓷及其复合隔热耐火结构在不同因素影响下的透波变化规律。首先,通过表征上述材料的宽温域(25~1000℃)介电特性,研究其介电特性随温度的变化规律;其次,通过多物理场耦合理论建立隔热耐火结构热透波性能计算模型;最后根据此模型计算温度梯度下隔热耐火结构的功率透过系数,研究其透波性能与温度梯度和微波参数的映射关系。本文主要从以下几个方面进行研究:(1)通过测试氮化硅、氮化硼在宽温域(25~1000℃)范围内的介电特性,分析了氮化硅、氮化硼材料的介电常数、损耗因子等参数的温度特性。结果表明,在宽温域范围内,氮化硅的介电常数变化幅度较大,其介电常数变化了23%左右,而氮化硼的介电常数变化幅度较小,介电常数仅变化了1.8%左右;但氮化硅和氮化硼的损耗因子随温度呈波动性变化,在900℃后都呈指数增长的趋势。(2)基于多物理场耦合理论,建立了单层氮化硅和氮化硼耐火结构热透波仿真模型,并对其进行瞬态温度场分析,得到不同因素影响下的功率透过系数变化曲线。研究发现,温升、频率和材料厚度等因素对单层耐火结构的热透波性能均具有较大的影响。频率为915 MHz时,氮化硅在厚度区间(0.052~0.058 m)范围内具有良好的透波效果(透过率>97%);氮化硼在厚度值为0.079 m时,具有较好的透波效果(透过率>99%),氮化硼的透波效果优于氮化硅。(3)在单层氮化硅陶瓷热透波模型的基础上,构建了多晶莫来石纤维板和氮化硅陶瓷双层复合隔热耐火结构模型,探究了不同因素影响下的功率透过系数。研究表明,双层复合隔热耐火结构在厚度为0.04 m和0.08 m时,具有较好的热透波性能。并在此厚度基础上,在垂直极化模式中,以入射角度在?i≤45°范围内入射时其具有良好的透波效果(功率透过系数≥0.85);水平极化模式中,入射角度在?i≤72°范围内入射,具有良好的透波效果(功率透过系数≥0.80)。
其他文献
针对烟草制丝过程存在工艺参数优化难以自适应完成,及优化过程数据信息中心化存储的安全性、数据信息易泄露、被篡改、伪造等问题,提出了一种基于区块链的烟草制丝工艺参数自适应优化模型,并在此基础上设计和验证了该模型,具体的研究内容如下:(1)分析了制丝过程质量指标与工艺参数之间的关系,构建制丝工艺参数优化的数学模型及自适应框架,并以松散回潮工序为例构建质量指标与工艺参数之间的BP神将网络的预测模型,并在此
行星传动在工业机器人RV齿轮箱等机械设备中应用广泛,其能承载较大的载荷,体积小但具有较大的传动比。由于工作环境恶劣,行星传动的关键旋转部件(如齿轮、轴承等)经常发生局部故障。关键旋转部件产生故障将使齿轮箱的运行状态受到影响,程度较轻时会造成生产链停滞,影响生产;故障程度较大则会产生严重的生产事故,造成较大的影响。因此,进行行星传动系统的故障检测方法研究,对避免由于齿轮故障而引起的机械安全事故具有重
RV减速器是工业机器人的关键零件,其结构的可靠性直接影响工业机器人的整体性能和使用寿命。RV减速器在工业机器人关节处长时间处于负载状态,关键传动部件的剩余强度不断降低,逐步发生性能退化问题,导致可靠性产生非线性衰减趋势,进而影响工业机器人产品性能。RV减速器发生故障与损坏,不仅可能会造成经济损失,还有可能会对相关人员造成安全隐患。为了提高RV减速器可靠性,需要进一步提高关键传动部件的工作性能,对R
在传统的硫磺燃烧制硫酸的工艺中,装置的大小,如SO2/SO3转换器,在很大程度上取决于处理的气体体积。氧载体在燃料反应器中与气化的硫磺发生反应,理论上可以获得比传统硫磺燃烧工艺更高的SO2浓度,降低了设备的运行成本,并降低了NOx和SOx污染物的排放。因此,研究硫磺的化学链燃烧发展潜力巨大,CLC制酸工艺也具有广阔的工业应用前景。本文使用溶胶凝胶法制备了不同惰性载体(ZrO2、MgAl2O4和Al
爆破器材的一个重要补充——静态破碎剂,其在安全性上占有突出的优势,但是静态破碎剂和传统炸药相比,在破碎时效和破碎能力上有很大的不足。目前,如何配制出适宜反应速率的静态破碎剂,提升静态破碎剂的破碎性能是国内外研究的热点。因此,为了研制出具有适宜反应速率和稳定破碎性能的新型静态破碎剂,本文以静态破碎剂的制备为基础,通过研究静态破碎剂熟料的煅烧温度对其反应速率的影响,分析各种成分含量变化对反应速率的影响
作为监视机械系统运行状态,保证机械设备能够正常工作的一个重要手段,机械设备故障诊断一直备受关注。轴承和RV减速器是机械操作的重要零部件,它们的运行情况会影响到整个机械系统的正常操作。因此,机械故障诊断技术对于工程领域来说是重中之重。本文利用时频分析方法分别进行轴承和RV减速器振动信号的故障识别。主要研究了基于S变换时频表示的滚动轴承故障特征提取,提出一种基于S变换时频谱和奇异值中值分解的降噪方法;
随着我国工业现代化的发展,液滴的尺寸、数量、浓度和生成频率等状态检测具有十分重要的意义。例如,通过检测管道内流体的压力和流速变化可以监测管道是否存在泄漏现象;精确把控液滴的大小可以实现药物合成;控制液滴生成频率和运动状态可调节反应物比例,从而实现面向管道内液滴状态的准确检测。传统流体检测技术主要有侵入式和非侵入式检测方法,不仅影响流场特征检测准确性,同时需要外部供电,增加检测设备成本。因此,本文提
减压阀是机械工业的基础元件,在液压传动系统中主要承担减压和稳压功能。现有减压阀采用机械弹簧实现预紧、调压及复位,弹簧结构的性能优劣将直接影响减压阀减压特性及系统运行稳定性。机械弹簧受固有材料属性及加工成形工艺影响,在高频运行过程中易出现应力松弛和疲劳断裂现象,严重影响减压阀稳压精度、响应时间以及可靠性。相较于传统机械弹簧,Halbach阵列磁弹簧具有结构简单、间隙磁斥力高以及弱磁侧磁自屏蔽效果良好
多孔保温材料在与外界环境进行热量传递的过程中,热量传递的方式主要有对流换热和热传导两种,两种传热方式会受到质热传递的影响,从而影响保温材料的保温隔热性能。对于多孔材料的热量传递过程来说,多孔材料孔隙通道的大小和分布情况,以及孔隙通道中气相或者湿相的含量会在很大程度上影响多孔材料的热量传递。此外,孔隙通道粗糙表面也会影响多孔材料与外界环境的热量传递。因此,要想清晰地分析多孔材料与外界环境的热量传递过
行星齿轮箱作为工业应用中部署最广泛的机械设备之一,是保障机器运转的关键基础部件。因此,对行星齿轮箱的状况进行监测和评估,是保障相关设备正常运行的重要手段之一。但是,行星齿轮箱由于结构繁琐、工作条件恶劣、噪声干扰大、运行状态多变等因素的影响,导致行星齿轮箱的振动监测信号表现形式复杂,使得基于先验知识的故障特征提取理论难以获得有效的状态信息,致使行星齿轮箱的状态的识别容易出现误判。针对上述问题,本文提