论文部分内容阅读
我国能源结构存在富煤贫油少气的特点,“十三五”到“十四五”期间总计新建10多万公里油气管道,促使油气管网覆盖进一步扩大,聚乙烯及其复合管以耐腐蚀性好、挠性高、可设计性强等特点,得到越来越广泛的应用,其中电熔连接作为该类管道系统最主要的连接方式之一,也将发挥更加重要的作用。随着聚乙烯电熔接头适用管道系统的输送压力、管道口径增加,管材、电熔套筒的强度通过纤维、钢板等增强材料得到提升,使得熔接区成为接头中的相对薄弱位置,拔脱失效成为接头中的主要失效模式之一。在拔脱失效中,管材从电熔套筒中沿轴向拔脱而出,引起介质泄漏,造成经济损失。目前对聚乙烯电熔接头拔脱失效的发生原因、失效位置与影响因素尚不明确,这严重影响了电熔接头的安全性,也制约了聚乙烯及其复合管道的发展应用。本文在国家自然科学基金面上项目的支持下,以聚乙烯电熔接头为研究对象,采用理论分析、试验研究与数值计算相结合的方法,对熔接区应力与材料性能分布、接头拔脱失效位置与原因、失效压力及其影响因素等方面开展研究,主要完成的工作有:(1)探究聚乙烯电熔接头熔接区的应力分布与材料性能。基于Lubkin和Reissner模型建立考虑弯矩的电熔接头应力场理论计算方法,结果表明熔接区切应力呈U型分布;通过深度敏感压痕技术探究聚乙烯管焊接接头内的弹性模量分布情况,发现熔区材料与母材的模量差异在7%范围内;结合理论模型与熔区材料性能,分析得到材料性能差异对熔接区切应力分布的影响较小,熔区长度与切应力集中系数间存在指数形式关系,为拔脱失效试验开展提供理论基础。(2)开展聚乙烯电熔接头拔脱失效试验,探究接头拔脱失效规律,深入分析拔脱失效原因。设计并焊制不同熔区长度(5 mm~25 mm)下的聚乙烯电熔接头,开展接头短时爆破试验,发现在较小熔区长度内,电熔接头发生拔脱失效,失效压力随熔区长度增加呈指数形式提高,当熔区长度增加到特定值后,失效模式转化为电熔套筒强度失效;对失效试样形貌进行观测,结合理论模型,发现拔脱失效发生在熔接区两端与电阻丝之间,沿轴向贯穿熔接区;进一步设计电熔接头剪切试验,利用数字图像相关技术确定了临界失效时熔合面及电阻丝区域的应变分布规律,并据此提出拔脱失效的判定依据。(3)建立聚乙烯电熔接头拔脱失效数值分析模型。比较数值分析与短时爆破试验结果,得到不同熔区长度接头失效压力的相对误差在1.8%~29.2%之间,电熔套筒外壁应变的相对误差在0.6%~21.2%之间,验证了模型的准确性;基于数值模型,分析了电熔接头拔脱失效过程中,熔区材料的应力分布及其随内压的变化规律;考虑Prony级数形式的聚乙烯黏弹性本构关系,建立长时拔脱失效预测模型,得到熔区材料应力、应变随时间初始变化较快,之后趋于稳定的变化规律;讨论内冷焊区长度、电阻丝直径、电熔套筒壁厚等结构参数对拔脱失效压力的影响规律,并设计一种高压RTP管电熔套筒结构,通过短时爆破试验验证设计结构的合理性。