层型锰系氧化物在钠离子电池正极材料中的应用

来源 :成都大学 | 被引量 : 0次 | 上传用户:phoenixs
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
锂离子电池具有高能量密度、长寿命、无污染等优点,已在手机、电动车等行业得到了广泛的应用。但我国锂资源数量少、分布不均匀,严重制约了其在大规模存储领域的应用。由于钠离子电池和锂离子电池有着类似的工作机制,钠元素的存在和分布范围很广,因此在大规模的储能系统中有着广阔的应用前景。P2层状金属氧化物是一种广泛应用于钠离子电池的正极材料,它具有比容量大、工作电压高、易于合成等优点。然而,该材料的充放电过程中有不可逆的相变现象,使其在实际应用中受到很大的限制。本文采用稳定好、电压高以及较高理论比容量的Na0.7MnO2.05为基质材料,探究材料成分、合成方法以及形貌结构对材料的电化学性能影响,具体的研究内容如下:(1)为了探索工艺条件对Na0.7MnO2.05正极材料的影响,制备了不同固相反应温度(400℃、600℃、800℃、1000℃),不同掺钠含量(5%、10%、15%)的正极材料。结果表明采用掺钠含量为5%,800℃下煅烧制备出的样品表面光滑,有明显的多边形层状结构、更高的纯度和结晶度。在0.1C电流密度下,其首次循环比容量为157.67 m Ah g-1,经过50次循环后,容量保持率为76%。(2)采用固相法合成的Na0.7MnO2.05微米颗粒,通过沉淀法分别制造Fe PO4,Ni3(PO4)2和Co3(PO4)2涂层Na0.7MnO2.05材料。Co3(PO4)2包覆的Na0.7MnO2.05材料作为钠离子电池正极材料显示出比原始Na0.7MnO2.05与Fe PO4,Ni3(PO4)2涂层Na0.7MnO2.05材料更好的电化学性能。5wt%的Co3(PO4)2涂层的Na0.7MnO2.05在0.1C的低电流密度下提供了237.8 m Ah g-1的高放电容量。此外,它显示了出色的速率能力和循环性能。它在1C的电流密度时提供了133.23 m Ah g-1的高放电容量。然而,原始的Na0.7MnO2.05在同样的情况下只显示了109.56 m Ah g-1的放电容量。结果显示,Co3(PO4)2涂层对提高电化学能力起着主导作用,并系统地研究了Co3(PO4)2涂层的Na0.7MnO2.05的电化学能力明显增强的机制。
其他文献
随着全球能源需求的增长,传统的化石能源已无法满足社会需求,因此研制低成本的能量转化设备以降低人类对化石资源的依赖,已是迫切需要研究的问题。氢氧电池、金属氧电池、甲醇/乙醇氧电池等耗氧电池作为一种低碳可持续装置,无疑处于绿色能源金字塔的顶端。电解水制氧是常见的技术之一,电解水过程中催化剂的使用能够有效降低阳极过电位和提高反应速率,从而实现能量的高效利用。但近年来,过渡金属铁、铜、镍、钴、锰等非贵金属
学位
镁合金是最轻的结构工程材料,在航空、航天、船舶运输等领域有广阔的应用前景。大部分镁合金材料性能在室温下强度很低,其密排六方晶体结构限制了塑性变形的独立滑移系数量,这同时又导致室温下镁合金塑性较差。到目前为止,针对镁合金强韧方法的研究虽较为火热,但仍然存在许多需要解决的问题。本文的研究以AZ31镁合金为研究对象,利用等通道转角挤压对镁合金晶粒进行细化,同时在不同晶粒尺寸的镁合金样品中提出两种动态挤压
学位
纳米载体材料在递送药物上扮演着重要的角色。固体脂质纳米粒是一种常用的药物递送载体,具有体内长循环和药物缓释作用,且对炎症、肿瘤等部位具有较好的靶向性。地塞米松棕榈酸酯(Dxp)是治疗急性肺损伤(Acute Lung Injury,ALI)最常用的药物,但其具有水溶性差、血液半衰期短、无特异性靶向等缺点。将地塞米松棕榈酸酯包载于固体脂质纳米粒中制备成靶向纳米制剂,可以有效解决这些问题。基于肺炎症部位
学位
由于现阶段面临的全球环境恶化和能源短缺问题,以及对大容量、低成本、高安全性的电化学存储设施升级的巨大需求,促使了水系电池,特别是水系锌离子电池(AZIBs)的迅速发展,AZIBs有可能成为高度商业化的锂离子电池的替代品。尽管AZIBs在未来储能领域具有诸多优势和广阔的前景,但仍存在许多的缺陷,比如锌枝晶的生长,锌腐蚀以及析氢等副反应导致电池循环稳定性差、库仑效率(CE)低等。其中锌枝晶生长是最为主
学位
与传统合金相比,高熵合金具有高强度、高耐腐蚀性、优异的高温力学性能、良好的抗辐照性能等诸多优异特性,被认为是极具应用前景的核能系统结构材料。但目前众多的高熵合金系统中均含有Co或Cu元素,Co元素易被辐照活化,Cu元素易形成辐照脆性沉淀物,恶化材料的力学性能,从而对核能系统的安全性构成极大的威胁。为此,本文提出开发新型无Co和Cu元素的高熵合金系统,设计并制备了AlxCrFeNi2.5Mo和Alx
学位
FeCrAl合金因其优异的高温抗蒸汽腐蚀性能、抗中子辐照性能以及良好的可加工性能,成为了先进耐事故燃料包壳中最具有发展前景的候选材料之一。但现有FeCrAl合金仍存在高温力学强度低、中子经济性差等问题,限制了FeCrAl合金的应用。为此,本文针对上述问题使用高熵合金作为弥散增强相,利用机械球磨和放电等离子烧结技术制备了高熵合金增强FeCrAl合金。通过SEM、XRD、EBSD、TEM、致密度测试、
学位
12Cr10Co3W2Mo Ni VNb NB(简称Co3W2)钢为我国自主研发的新型马氏体耐热钢,F92属日本研发的92系马氏体耐热钢,现已国产化。两种钢材具备优异的高温性能,F92/Co3W2异种焊件被东方电器集团用于制造超超临界机组用过/再热器等部件。国内外尚未见针对F92与Co3W2异材质焊接接头的研究报道,为保障F92/Co3W2异种钢焊接接头的高温服役安全,有必要对其焊接性及高温蠕变性
学位
在环境污染和传统的不可再生能源消耗日益严峻的情况下,找到一种无污染、可持续的绿色能源作为传统能源的替代品成为当选能源领域研究的一大热点。太阳能、风能等诸多新型能源中,锂电池由于其能量密度大、输出电压高、输出功率大、无记忆效应等优点而受到广泛的关注。隔膜是锂离子电池(LIBs)的主要组成部分之一,其性能直接影响LIBs的电化学性能与工作稳定性。聚偏氟乙烯-六氟丙烯(PVDF-HFP)隔膜具有较好的耐
学位
压电陶瓷因其具备压电效应,是一类珍贵且稀缺的功能材料,广泛应用于多个高科技领域。由此,压电陶瓷成为各国争相研究的热点话题。然而,占据主导地位的是含有大量有毒铅的锆钛酸铅(简称PZT)基陶瓷,在生产和使用过程中会产生大量的有害物质,对生态环境和身体健康造成严重的危害。从人类的健康和环境的可持续发展出发,很多国家和地区相继出台了相关的法律法规来限制含铅等有害物质的产品使用。因此,研究环境友好型的无铅压
学位
现阶段我国纤维金属复合材料(FMLs)已有一定范围的工程应用,各种类型的纤维金属层板已得到深入研究。纤维金属层板一般采用金属合金、纤维布等作为介质热压成型,在提高其抗冲击力学性能的同时会导致复合材料的重量显著增加,轻量化设计仍是一个需要深入研究的方向。本文基于此制备一种剪切增稠凯夫拉纤维/铝合金层板的复合材料(STF-FMLs),实现在不增加或少量增加复合材料重量的同时,能显著提升其抗低速冲击性能
学位