【摘 要】
:
FeCrAl合金因其优异的高温抗蒸汽腐蚀性能、抗中子辐照性能以及良好的可加工性能,成为了先进耐事故燃料包壳中最具有发展前景的候选材料之一。但现有FeCrAl合金仍存在高温力学强度低、中子经济性差等问题,限制了FeCrAl合金的应用。为此,本文针对上述问题使用高熵合金作为弥散增强相,利用机械球磨和放电等离子烧结技术制备了高熵合金增强FeCrAl合金。通过SEM、XRD、EBSD、TEM、致密度测试、
论文部分内容阅读
FeCrAl合金因其优异的高温抗蒸汽腐蚀性能、抗中子辐照性能以及良好的可加工性能,成为了先进耐事故燃料包壳中最具有发展前景的候选材料之一。但现有FeCrAl合金仍存在高温力学强度低、中子经济性差等问题,限制了FeCrAl合金的应用。为此,本文针对上述问题使用高熵合金作为弥散增强相,利用机械球磨和放电等离子烧结技术制备了高熵合金增强FeCrAl合金。通过SEM、XRD、EBSD、TEM、致密度测试、硬度分析、拉伸性能测试等分析手段,系统研究了制备工艺、高熵合金的种类以及含量对FeCrAl合金微观结构和性能的影响规律和作用机理。取得以下主要创新性成果:(1)通过对照两组含量为0%、2%、4%、6%、8%的Al1.8CuCrFeNi2-FeCrAl合金研究了无水乙醇作为过程控制剂的影响。实验结果表明,无水乙醇将促进富Cr-a’相与纳米Al2O3颗粒形成。其不均匀的分布将削弱合金的塑性,降低合金的结构稳定性。因此,无水乙醇不适合使用在高含量高熵合金增强FeCrAl合金的场景中。另外,通过对比不同烧结温度下6%Al1.8CuCrFeNi2-FeCrAl合金的力学性能,发现提高烧结温度将提高颗粒之间的接触面积,减少宏观缺陷的产生;促进固溶元素的扩散速率,消除球磨过程中产生的微观缺陷。这提高了合金的综合力学性。因此,1050℃是最佳的烧结温度。(2)当Al1.8CuCrFeNi2高熵合金的含量为6%时,Al1.8CuCrFeNi2-FeCrAl合金的室温力学性能最佳:极限抗拉强度为1358MPa,延伸率为14.9%;同时其在800℃下的力学性能也为最佳:极限抗拉强度为96MPa,延伸率为6.9%。但是当Al1.8CuCrFeNi2高熵合金的含量超过15%后,无论是室温条件下还是高温条件下,Al1.8CuCrFeNi2-FeCrAl合金的力学性能都出现了严重的下降。其抗拉强度均不超过20MPa。(3)当Al0.5CrFeNi2.5Mo高熵合金的含量为25%时,Al0.5CrFeNi2.5Mo-FeCrAl合金的室温力学性能最佳:极限抗拉强度为1252MPa,延伸率为5.2%;但是当Al0.5CrFeNi2.5Mo高熵合金的含量为35%时,Al0.5CrFeNi2.5Mo-FeCrAl合金在800℃下具有极其优异的力学性能:极限抗拉强度为145MPa,延伸率为34.7%。
其他文献
高分子基硬质泡沫具有优异的隔热和比强度,在航空航天、国防军工等制造业具有广阔的应用前景。含苯并噁嗪腈基树脂(BZPN)是一种含双官能团种类的热固性高分子,独特的分子结构一方面赋予其良好的加工性能,另一方面给予其固化物优异的物理化学性能。BZPN固化时间短、固化温度低、固化物具有耐高温、高强度、高模量、抗腐蚀、自阻燃的性能,因此有望是制备高性能硬质泡沫的优良基体。基于此,BZPN作为耐高温阻燃型硬质
在不久的将来,快速发展的锂离子电池所需求的锂源是现有资源无法提供的。因此,需要开发基于可持续发展的下一代后锂电池技术,以满足日益增长的储能需求。钠是地球上丰富的元素,具有与锂相似的氧化还原特性。因此,这为钠离子电池提供了一个有吸引力的机会来成为锂离子电池的有力“候选人”,特别是用于电网储能或低速/短距离电力运输。然而,主导商业锂离子电池市场的石墨负极无法为钠离子电池提供类似于锂离子电池的存储容量。
心脏的主要功能是维持体内各个器官的血液灌注,当心脏长期处于病理性应激状态时,将会诱发病理性心肌肥厚和纤维化。病理性心肌肥厚是心力衰竭的主要激活因素之一。目前,没有有效的药物能完全逆转或抑制病理性心肌肥厚和纤维化的发展。为此,我们提出了一种基于硅酸钙(Calcium Silicate,CS)生物陶瓷提取物的硅酸盐离子治疗和硅酸钙电纺丝膜治疗心肌肥厚和心脏纤维化的新方法。本研究分别从体外和体内实验探索
为了减少化石资源的过度开采和对环境的不利影响,环境友好的可再生能源成为了国际社会关注的焦点。具有“零”碳排放特征的氢能源的开发与应用成为了最具前景的方向,氢能源应用的最优选择是电解水制取绿氢。但电解水制氢反应中的阳极析氧反应(oxygen evolution reaction,简称OER)具有较慢的动力学特性,影响了电解水的效率。为了提高OER的效率,工业界常常使用贵金属及其化合物作为有效的催化剂
氨作为一种重要的工业化学品,已经广泛应用于医药、化肥及能源载体。目前,能源密集型的哈勃-博施(H-B)工艺在高温高压条件下催化氢气和氮气聚合,每年约生产1.76亿吨工业氨。虽然H-B工艺不断改善,但该工艺所需的能耗和二氧化碳排放量分别约占当年全球总量的2%和1%,不利于绿色和可持续发展。近年来,许多研究人员对环境友好型的电化学合成氨的技术给予了相当大的关注。然而,在电催化合成氨技术中,催化剂的设计
随着全球能源需求的增长,传统的化石能源已无法满足社会需求,因此研制低成本的能量转化设备以降低人类对化石资源的依赖,已是迫切需要研究的问题。氢氧电池、金属氧电池、甲醇/乙醇氧电池等耗氧电池作为一种低碳可持续装置,无疑处于绿色能源金字塔的顶端。电解水制氧是常见的技术之一,电解水过程中催化剂的使用能够有效降低阳极过电位和提高反应速率,从而实现能量的高效利用。但近年来,过渡金属铁、铜、镍、钴、锰等非贵金属
镁合金是最轻的结构工程材料,在航空、航天、船舶运输等领域有广阔的应用前景。大部分镁合金材料性能在室温下强度很低,其密排六方晶体结构限制了塑性变形的独立滑移系数量,这同时又导致室温下镁合金塑性较差。到目前为止,针对镁合金强韧方法的研究虽较为火热,但仍然存在许多需要解决的问题。本文的研究以AZ31镁合金为研究对象,利用等通道转角挤压对镁合金晶粒进行细化,同时在不同晶粒尺寸的镁合金样品中提出两种动态挤压
纳米载体材料在递送药物上扮演着重要的角色。固体脂质纳米粒是一种常用的药物递送载体,具有体内长循环和药物缓释作用,且对炎症、肿瘤等部位具有较好的靶向性。地塞米松棕榈酸酯(Dxp)是治疗急性肺损伤(Acute Lung Injury,ALI)最常用的药物,但其具有水溶性差、血液半衰期短、无特异性靶向等缺点。将地塞米松棕榈酸酯包载于固体脂质纳米粒中制备成靶向纳米制剂,可以有效解决这些问题。基于肺炎症部位
由于现阶段面临的全球环境恶化和能源短缺问题,以及对大容量、低成本、高安全性的电化学存储设施升级的巨大需求,促使了水系电池,特别是水系锌离子电池(AZIBs)的迅速发展,AZIBs有可能成为高度商业化的锂离子电池的替代品。尽管AZIBs在未来储能领域具有诸多优势和广阔的前景,但仍存在许多的缺陷,比如锌枝晶的生长,锌腐蚀以及析氢等副反应导致电池循环稳定性差、库仑效率(CE)低等。其中锌枝晶生长是最为主
与传统合金相比,高熵合金具有高强度、高耐腐蚀性、优异的高温力学性能、良好的抗辐照性能等诸多优异特性,被认为是极具应用前景的核能系统结构材料。但目前众多的高熵合金系统中均含有Co或Cu元素,Co元素易被辐照活化,Cu元素易形成辐照脆性沉淀物,恶化材料的力学性能,从而对核能系统的安全性构成极大的威胁。为此,本文提出开发新型无Co和Cu元素的高熵合金系统,设计并制备了AlxCrFeNi2.5Mo和Alx